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Introduction

Let F be a non-archimedean local field and let G be a quasi-split reductive group over F . The local
Langlands conjecture states that there should be a bijection between the set of equivalence classes of L-
parameters φ : WF → LG and the set of L-packets Πφ(G), where an L-packet is a finite set of irreducible
representations of G(F ), the L-packets are all disjoint, and their union exhausts the set of equivalence classes
of irreducible smooth representations of G(F ).

The existence of such a bijection is known for many groups. For example, the case in which G = T is a
torus was already understood 60 years ago and was one of the motivating examples for this theory.

One of the most interesting cases is when we restrict our attention to the set of unramified representations
of G(F ). We can define a map

LLur : Πur(G)→ Φur(G)

from the set of irreducible unramified representations of G(F ) to the set of the unramified L-parameters of G.
This map is defined by taking an unramified irreducible representation π of G(F ), seeing it as an unramified
irreducible representation of some torus T (F ) ⊂ G(F ) using the Satake transform S , and then using the
correspondence for tori to get an L-parameter. The fibers of this map are almost always well understood
thanks to works like [Key87] or [Mis13].

Recently, in [Kal22], the refined local Langlands conjecture was extended to some class of disconnected
groups whose identity component is reductive. The goal of this thesis is to define and study unramified
representations in this new disconnected setting introduced by Kaletha. In particular, we defined a map

L̃Lur : Πur(G̃)→ Φur(G̃)

from the set of unramified representation of G̃(F ) to the set of unramified L-parameters of G̃, and we
proved that the fibers of this map can be described as Kaletha predicted in some cases, as when the identity
component G̃◦ is GLn or adjoint.

The structure of this thesis is as follows: in Chapter 1 we give a brief introduction to the classical
local Langlands conjecture. In particular, in Section 1.3 we recall what happens in the case of unramified
representations and we recall the description of the L-packets following [Key87] and [Mis13]. In Chapter 2,
we follow [Kal22] for an introduction to the new disconnected conjecture. In particular, in Section 2.1 we
give an easy proof of the conjecture in the case of quasi-split tori. Finally, in Chapter 3 we define and study
the unramified correspondence in the disconnected setting, proving the conjecture in the case of groups with
adjoint identity component. In the last section, we study the case in which there are multiple conjugacy classes
of hyperspecial maximal compact subgroups, and we prove the conjecture under some strong conditions.
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Notations

Unless otherwise stated, F is a non-archimedean local field with ring of integers OF and residue field
f. We denote by q the cardinality of f. If F ′/F is a Galois extension, we will denote by ΓF ′/F the Galois
group Gal(F ′/F ). We will fix F a separable closure of F, and we will denote by ΓF the absolute Galois
group Gal(F/F ), by IF the inertia subgroup, and by WF the Weil group of F . We denote by frob ∈ ΓF a
Frobenius element. We denote by WDF the Weil-Deligne group of F , i.e. the group scheme over Q given by
WDF =WF × SL2 .

G is a quasi-split reductive group over F with a maximal split torus S. We denote by R(G,S) the set of
roots associated to S, by W =W (G,S) the relative Weyl group of G, and by W̃ the affine Weyl group of G.
We denote by B(G) the reduced Bruhat-Tits building of G. The apartment of the building associated to S is
denoted by A(S). If T is any torus over F , we denote the characters (resp. the cocharacters) of T by X∗(T )

(resp. X∗(T )). A(S) is an affine space over X∗(S)⊗ R, and a point x ∈ A(S) is given by a valuation of the
root datum φx = {φα,x}α∈R(G,S).

1 The local Langlands conjecture for connected groups

In this section, we will introduce the unramified local Langlands conjecture for connected quasi-split
reductive groups. We start by giving a fast introduction to the general conjecture using facts from [Bor79],
[Car79] and [KT]. In section 1.3 we will describe the state of the art of the unramified conjecture following
the original paper [Key87] and a more recent one [Mis13].

1.1 The basic objects

The automorphic side

By a representation of G(F ) we will mean, as customary, a pair (π, V ) where V is a complex vector space
and π a homomorphism G(F ) → GL(V ). If H is a subgroup of G(F ), we denote by V H the stabilizer of H
in V .

Definition 1.1. A representation (π, V ) of G(F ) is called smooth if the stabilizer of every vector in V is
open. Equivalently, (π, V ) is smooth if V =

⋃
K V K where K runs over the compact open subgroups of G(F ).

A smooth representation is moreover called admissible if V K is finite-dimensional for every compact open
subgroup K of G(F ). It is a non-trivial fact that every irreducible smooth representation is admissible.

Finally, (π, V ) is called tempered if for every parabolic subgroup P = MN of G, the absolute value of
any character of the maximal split torus AM in M occurring in rGP π is a linear combination with non-negative
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coefficients of the simple roots of AM in N . Here rGP is the normalized Jaquet functor [KT][3.2]. We denote
by Π(G) the set of irreducible smooth representations of G(F ) and by Πtemp(G) the set of irreducible smooth
tempered representations of G(F ). Notice that all these definitions make sense even if G is not reductive.

The condition of being smooth imposes strong continuity conditions. Indeed, a representation (π, V ) of
G(F ) is smooth if and only if the map

G(F )× V → V

given by the action of G(F ) on V is continuous after equipping V with the discrete topology.
Every smooth representation is a C[G(F )]-module, but not every C[G(F )]-module is smooth (e.g. C[G(F )]

is not smooth). For this reason we introduce the Hecke algebra of G: let K be any compact open subgroup of
G(F ). We define H(G(F ),K) to be the space of complex-valued functions f on G(F ) such that the following
two conditions hold:

• f is K-bi-invariant, i.e. f(kgk′) = f(g) for every k, k′ ∈ K and g ∈ G(F );

• f vanishes outside a finite union of double cosets KgK.

Choosing a left-invariant Haar measure µ on G(F ), we can give H(G(F ),K) an associative algebra struc-
ture, with product given by convolution:

(f ∗ f ′)(g) =
∫
G(F )

f(x)f ′(x−1g)dx.

A basis of this algebra is given by the set of characteristic functions on a double coset on K.
We now define H(G(F )) :=

⋃
K H(G(F ),K) where the union runs over all the possible compact open

subgroups K of G(F ). We get that H(G(F )) is the algebra of locally constant and compactly supported
complex-valued functions on G(F ), with product given by convolution, and it is called the Hecke algebra
of G(F ).

The Hecke algebra is the smooth analogue of the group algebra:

Theorem 1.2. The category of non-degenerate H(G(F ))-modules is equivalent to the category of smooth
representations of G(F ) and intertwining maps.

Proof. The proof of this can be found in [Car79, Section 1.4].

Remark 1.3. From now on, when we talk about representations of reductive groups we will consider only
smooth representations.

To conclude this section about smooth representations, we introduce the notion of parabolic induction of
a representation: let P ⊂ G a parabolic subgroup, let N be the unipotent radical of P and let M ∼= P/N

be its reductive quotient. Let (π, V ) be a smooth representation of M(F ). We will view π as its inflation to
P (F ). The normalized parabolic induced representation iGPπ is the space of locally constant functions
f : G(F )→ V such that

f(pg) = δ(m)1/2π(m)f(g) ∀p = mn ∈ P (F ), g ∈ G(F ),

with left action of G(F ) given by (g · f)(x) = f(xg). Here δ(m) := |det(Adn(m))|F is the modulus character
of the action of M(F ) on N(F ), where Adn(m) is the adjoint action of m ∈ M(F ) on the Lie algebra n of
N(F ).. We recall that if π is admissible (resp. has finite length) then iGPπ is again admissible (resp. has
finite length). Moreover, if P = B is a Borel subgroup and M = T is a maximal torus, then iGB takes unitary
characters to unitary representations.
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The Galois side

Definition 1.4. Let T be a maximal torus of G, let B be a Borel subgroup containing T, R(G,T ) the
set of roots associated with T, and ψ = (X∗(T ),∆(B), X∗(T ),∆

∨(B)) the based root datum associated to
(G,B, T ). We define the complex dual group Ĝ to be the reductive group over C corresponding to the
based root datum ψ∨ = (X∗(T ),∆

∨(B), X∗(T ),∆(B)). We denote by B̂ and T̂ the Borel and the maximal
split torus defined by the root datum.

Example 1.5. If G = GLn then Ĝ ∼= GLn /C: let T be the maximal torus consisting of diagonal matrices in
GLn . Let {εi}i=1,...n be the canonical basis of X∗(T ) ∼= Zn, and let {ε∨i }i=1,...,n the dual basis of X∗(T ) ∼= Zn.

Then, setting
∆ = {εi − εi+1, 1 ≤ i < n} and ∆∨ = {ε∨i − ε∨i+1, 1 ≤ i < n},

we see that (X∗(T ),∆, X∗(T ),∆
∨) = ψ ∼= ψ∨.

On the other hand, one can show that if G is simply connected (resp. adjoint), then Ĝ is adjoint (resp.
simply connected). Since the map that sends R(G,T ) to R(G,T )∨ permutes the types Bn and Cn, we get
that if G ∼= Sp2n, then Ĝ ∼= SO2n+1 .

When G is not split it is often useful to work with the following variant of the complex dual: choosing a
pinning (B, T, {xα}α∈∆(B)) of G, we obtain a bijection

Aut(G,B, T, {xα}α∈∆(B))
∼−→ Aut(ψ).

Picking γ ∈ ΓF , there exists g ∈ G(F ) such that γB = gBg−1 and γT = gTg−1. Therefore we have a map
ΓF → Aut(ψ). Moreover, since Aut(ψ) = Aut(ψ∨), choosing a monomorphism Aut(ψ∨) → Aut(Ĝ, B̂, T̂ )

gives a homomorphism ΓF → Aut(Ĝ, B̂, T̂ ). We define the L-group of G to be LG = Ĝ⋊ ΓF .

Now we can give the definition of an L-parameter:

Definition 1.6. An admissible L-parameter is a continuous morphism φ : WF × SL2(C)→ LG over ΓF

which is:

1. Semisimple on the first factor, i.e. the elements in φ(WDF×1) are semisimple.

2. Algebraic on the second factor i.e. the map

SL2(C) ↪→WDF
φ−→ LG→ Ĝ

is a map of algebraic groups.

The set of equivalence classes modulo inner automorphisms by elements of Ĝ of admissible L-parameters is
denoted by Φ(G). We say that an L-parameter is tempered if its image is bounded in Ĝ. We will denote
the set of tempered L-parameter by Φtemp(G).

Example 1.7. If G = GLn then an L-parameters is a Weil-Deligne representation of dimension n.

1.2 The conjecture

Now that we have defined all the basic objects, we can state the conjecture. Let φ ∈ Φtemp(G). We define
the group

Sφ := Cent(φ(WDF), Ĝ) = {g ∈ Ĝ | gφ(WDF)g
−1 ⊂ φ(WDF)}.

This is an algebraic group with reductive identity component and it contains Z(Ĝ)ΓF . We define

Sφ := Sφ/Z(Ĝ)
ΓF .
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Conjecture (Unrefined LLC): There exists a map LL : Πtemp(G)→ Φtemp(G) with finite fibers. We call
the fiber of φ ∈ Φtemp(G) the L-packet associated to φ, and we denote it by Πφ or Πφ(G). Moreover, there
is a bijection between the set Πφ(G) and the set of irreducible representations of the finite group π0(Sφ).

In particular, we are just asking for an explicit description of the L-packets. This conjecture can be
further refined in many different ways. One can ask for LL to be in some sense "functorial" or compatible
with parabolic induction. Moreover, one might want to generalize this conjecture to non-quasi-split groups.
Since these generalizations are not going to be relevant to this thesis, we just refer to [KT] and [Kal16].

The existence of a conjectural map LL like the one that we are looking for is well known for several groups.
For example, for G ∼= GL1 = Gm/F the map comes from the local class field theory: since Gm is abelian, the
group π0(Sφ) is trivial for every L-parameter φ. Therefore we expect a bijection between smooth irreducible
representation and L-parameters. The bijection comes from local class field theory as follows:

Hom(Gm(F ),C×) ∼= Hom(W ab
F ,C×) ∼= Hom(WF ,C×).

Similarly, we can extended this argument to get a map for any split torus: if G ∼= T = Gn
m we have

Hom(T (F ),C×) ∼= Hom(F× ⊗X∗(T ),C×) ∼= Hom(F×,C× ⊗X∗(T̂ ))

∼= Hom(W ab
F , T̂ (C)) ∼= Hom(WF , T̂ (C)).

The existence of a map for any torus is slightly harder to prove. It was already known 60 years ago and
it was one of the motivating examples of the theory:

Theorem 1.8 (Langlands). Let T/F be any torus. Then there exists a bijection LLT : Π(T )→ Φ(T ).

Proof. The original proof is due to Langlands [Lan97, Theorem 1], but we will follow [Yu09] for a more recent
and elementary exposition. We will just give a sketch of the proof.

First of all, since the elements of Φ(T ) are trivial on SL2, we have that

Φ(T ) = H1(WF , T̂ (C)).

Let E/F be a finite Galois extension such that T is split over E and consider the restriction map

H1(WE , T̂ (C))→ H1(WF , T̂ (C)).

The existence of a bijection LLT : Π(T )→ H1(WF , T̂ ) follows from the following three statements:

1. The restriction map H1(WE , T̂ (C))→ H1(WF , T̂ (C)) factors through H1(WF , T̂ (C))ΓE/F
.

2. The natural map Hom(T (E),C×)ΓE/F
→ Hom(T (F ),C×), which comes from the restriction map

Hom(T (E),C×)→ Hom(T (F ),C×), is an isomorphism.

3. Define the map LLT to be the composition

Hom(T (F ),C×)
∼−→ Hom(T (E),C)ΓE/F

∼−→ H1(WE , T̂ (C))ΓE/F

∼−→ H1(WF , T̂ (C)).

Then LLT is independent of the choice of E.

The proof of these three claims is in [Yu09, Section 7.7].

Notation 1.9. From now on, if T is any torus and χ ∈ Πtemp(T ), we will denote φχ the associated L-parameter.
Conversely, if φ is an element in Φtemp(T ), we will denote by χφ the associated unramified character.
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1.3 The unramified conjecture

Definition 1.10. A hyperspecial compact subgroup K of G(F ) is a subgroup that is the stabilizer of a hy-
perspecial vertex in the reduced Bruhat-Tits building B(G) ([KP23, 7.11.1]). Equivalently, K is hyperspecial
if there exists a smooth affine group scheme G over OF such that the following conditions hold:

1. G(OF ) = K;

2. GF ∼= G;

3. Gf is a connected reductive group.

Example 1.11. • If G = SL2 /Qp we have 2 conjugacy classes of hyperspecial compact subgroups, with
representatives K =

(
Zp Zp

Zp Zp

)
and K ′ =

(
Zp pZp

p−1Zp Zp

)
. On the other hand, it is a well known fact that

GLn has just one conjugacy class of hyperspecial maximal compact subgroups.

• If G is adjoint then all the hyperspecial maximal compact subgroups are conjugated [KP23, Proposition
10.2.2]. This is going to be important later.

Not every group contains a hyperspecial compact subgroup, since it is not true that every group has
a hyperspecial vertex in its Bruhat-Tits building. An example of a group with no hyperspecial maximal
compact subgroup is SL(D) with D a division algebra over F . In this case, B(SL(D)) is just a single point
x. There exists an unramified field extension E/F such that the base change of SL(D) to E is isomorphic
to SLm(E) for some m ∈ N. The base change induces an inclusion of B(SL(D)) into B(SLm(E)) that sends
x to the barycenter of a chamber of B(SLm(E)). Therefore x is a special point of B(SL(D)) but it is not
hyperspecial.

Definition 1.12. A reductive group G is unramified if it is quasi-spit and it splits over an unramified
extension. Equivalently, a group is unramified if its Bruhat-Tits building has a hyperspecial vertex [KP23,
Remark 7.11.2].

Unless otherwise stated, in this section we will assume G to be unramified.

Definition 1.13. Let K be a hyperspecial maximal compact subgroup of an unramified group G(F ). A
smooth representation (π, V ) of G(F ) is called spherical with respect to K (or K-spherical) if V K ̸= 0. We
call (π, V ) unramified if it is spherical with respect to some hyperspecial maximal compact subgroup. We
will denote the set of unramified irreducible representations of G(F ) by Πur(G).

Remark 1.14. The property of being K-spherical for a representation (π, V ) depends only on the conjugacy
class of K. In fact, it is easy to check that π(g)V K = V gKg−1

.

Remark 1.15. If K is a hyperspecial maximal compact subgroup, then the bijection coming from Theorem
1.2 restricts to a bijection between irreducible K-spherical representations of G(F ) and simple H(G(F ),K)-
modules.

Example 1.16. The simplest examples of unramified representations are characters of a split torus T (F )
trivial on T (OF ). More general, if T is any torus, a character χ of T (F ) it is unramified if it is trivial on the
maximal compact subgroup T (F )1. We can see T (F )1 as the kernel of the valuation map

ωT : T (F )→ X∗(T )

defined by the property
〈
ωT (t), α

〉
= |α(t)|F .

If T = Gm, then the map ωT is just the valuation map. This is a simple check: let x ∈ F× and let
f = n ∈ X∗(T ) ∼= Z. Then

n · ωT (x) =
〈
ωT (x), f

〉
= val(f(x)) = val(xn) = n · val(f(x)),
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so ωT (x) = val(x). Then Gm(F )1 = O×
F . Generalizing this argument, we get that T (F )1 = T (OF ) for a

general split torus T .

For T = Gm the unramified characters correspond to characters of the Galois group trivial on the inertia
via the local reciprocity map. This motivates the term unramified and the following definition:

Definition 1.17. An L-parameter φ of G is unramified if it is trivial on SL2(C) and on IK . We will denote
the set of unramified L-parameters of G by Φur(G).

The LLC for tori restricts to a correspondence between unramified L-parameters and unramified repre-
sentation:

Theorem 1.18. Let T be an unramified torus. Then LLT induces a bijection LLur : Πur(T )→ Φur(T ).

Proof. For the proof we follow [Bor79, Section 9.5]. Let T/F be an unramified torus that splits over an
unramified extension F ′/F.

From Hilbert’s Theorem 90, we know that H1(ΓF ′/F ,O×
F ′) = 1, and, since T splits over F ′ it follows that

H1(ΓF ′/F , T (F
′)1) = 1. Using the short exact sequence

0→ T (F ′)1 → T (F ′)→ T (F ′)/T (F ′)1 → 0,

by the long exact sequence of Galois cohomology, we get (T (F ′)/T (F ′)1)ΓF ∼= T (F )/T (F )1, and therefore

(T (F ′)/T (F ′)1)ΓF ∼= (X∗(T ))ΓF .

This argument gives a more explicit description of the unramified L-packets:

Πur(T ) ∼= Hom(X∗(T )
ΓF ,C×).

The RHS consists of the C-point of the Langlands dual of a maximal split torus Td in T. From [Bor79,
Lemma 6.4] we get that Πur(T ) is in bijection with (T̂ ⋊ frob)/ Inn(T̂ ), where Inn(T̂ ) is the group of inner
automorphisms of T̂ .

On the other hand, every unramified L-parameter φ of T, is determined by by the image of the Frobenius,
up to conjugation by T̂ . So we have

Φur(T ) ∼= (T̂ ⋊ frob)/ Inn(T̂ )

and therefore we have the bijection
LLur : Πur(T )→ Φur(T ).

The importance of unramified representations lies in their relevance in the global Langlands conjecture
since one can show that automorphic representations are unramified at almost every place. A fundamental
tool to study unramified representation is the Satake isomorphism, which gives us a link between unramified
representations of an unramified group and unramified representations of one of its maximal tori. For the
proof, we will follow [Car79, Theorem 4.1] filling in some omitted details using some facts from [HR10].

We will need the following important results:

Theorem 1.19 (Cartan decomposition). Let S be a maximal split torus of G, x a special vertex in A(S)
and Px the associated parahoric subgroup with type Wx. Then

G(F ) =
⊔

w∈Wx\W̃/Wx

PxwPx.
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Proof. For a general introduction to Tits systems, we refer to [Bou02, Chapter 4,section 2]. The statement
of this theorem is much more general and it holds for a generic Tits system: given a Tits system (G,B,N,R)

with Weyl group W , for every two standard parabolic subgroups P, P ′ of type WP and WP ′ respectively, and
for every w ∈W, we have

PwP = BWPwWP ′B.

In particular, we have a bijection
P\G/P ′ ←→WP \W/WP ′ .

The proof of this fact is in [Bou02, Chapter 4, Section 2, Subsection 5, Proposition 2]. Applying this
to the Iwahori-Tits system proves the proposition for G(F )0. From this, one can generalize to the case for
G(F ) ̸= G(F )0 [KP23, Theorem 5.2.1].

Theorem 1.20 (Satake isomorphism). Let S a maximal split torus of an unramified group G, let T be the
centralizer of S in G, and let B ⊃ T be a Borel subgroup with unipotent radical U. Let K be a maximal
hyperspecial compact subgroup of G(F ), that is the stabilizer of a hyperspecial vertex in A(S). We normalize
the Haar measure µ on G(F ) such that µ(K) = 1. Then the map

S : H(G(F ),K)→ H(T (F ), T (F ) ∩K)W

that sends
f 7→

(
t 7→ S f(t) := δ(t)−1/2

∫
U(F )

f(ut)du,

is an isomorphism of C-algebras. This map is called the Satake transform or the Satake isomorphism.

Proof. We divide the proof into steps:

1. S is an algebra homomorphism from H(G(F ),K) to H(T (F ), T (F ) ∩K);

2. The image of S is contained H(T (F ), T (F ) ∩K)W ;

3. S is a linear isomorphism.

For the first part, we notice that S can be written as the composition

H(G(F ),K)
α−→ H(B(F ))

β−→ H(T (F )) γ−→ H(T (F )),

where α is just the restriction from G(F ) to B(F ), β sends f to βf(t) =
∫
U(F )

f(tu)du, and γ is multiplication
by δ−1/2. Let dlx be a left invariant Haar measure on B(F ). The map α is an algebra homomorphism, since
if b ∈ B(F ), then

(
f1 ∗ f2

)
(b) =

∫
G(F )

f1(g)f2(g
−1b) dg =

∫
K

∫
B(F )

f1(xk)f2(k
−1x−1b) dlx dk

=

∫
K

∫
B(F )

f1(x)f2(x
−1b) dlx dk =

∫
B(F )

f1(x)f2(x
−1b) dlx

=
(
f1|B(F ) ∗ f2|B(F )

)
(b),

for every f1, f2 ∈ H(G(F ),K). In the second equality, we use the Iwasawa decomposition G(F ) = BK, in
the third we use that f1 and f2 are K-bi-invariant, and in the fourth we use that we chose a Haar measure
such that the measure of K is 1.

Now we want to show that β is an algebra homomorphism. We know that

β(f1 ∗ f2)(t) =
∫
U(F )

∫
B(F )

f1(x)f2(x
−1ut) dlx du
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for every f1, f2 ∈ H(B(F )), and we need to prove that this expression is equal to∫
T (F )

(∫
U(F )

f1(ux) du ·
∫
U(F )

f2(u
′x−1t) du′

)
dx,

with dx an Haar measure on T (F ). The equality follows from∫
T (F )

(∫
U(F )

f1(ux) du ·
∫
U(F )

f2(u
′x−1t) du′

)
dx =

∫
T (F )

∫
U(F )

∫
U(F )

f1(ux)f2(u
′x−1t) du du′dx =

=

∫
B(F )

∫
U(F )

f1(b)f2(ūb
−1t) db dū = β(f1 ∗ f2)(b).

In the last step, we are using the change of variables b = ux.

Finally, the fact that γ is an algebra homomorphism comes from the fact that δ is a character. In fact,

(δ−1/2f1 ∗ δ−1/2f2)(t) =

∫
T (F )

δ−1/2(x)f1(x)δ
−1/2(x−1t)f2(x

−1t)dx =

= δ(t)−1/2

∫
T (F )

f1(x)f2(x
−1t)dx = δ(t)−1/2

(
f1 ∗ f2

)
(t).

This proves that S is an algebra homomorphism.
Now we start with the proof of the second part. First we point out that

W ∼= N(S)/S ∼= N(S) ∩K/S ∩K.

In fact, if n ∈ N(S) acts on φx ∈ A(S) via n · φα,x(−) = φn−1α,x(n
−1 − n), we can choose s ∈ S such that

(ns) · φx = φx. Therefore ns stabilizes x. So nS ∈W has a lift in N(S) ∩K.
Since W ∼= N(S) ∩K/S ∩K, the image of S is contained in the Weyl invariants if and only if

S f(xtx−1) = S f(x), (1)

for t ∈ T (F ) and x ∈ N(S) ∩K. Now we consider the function t 7→ det(Adu(t)− 1) from T (F ) to F . Since
this is a polynomial and it is nonzero, the elements of T (F ) that do not annihilate this function are dense in
T (F ). We call these elements regular. Hence by continuity it suffices to prove 1 just for t regular.

Using [Car79, Lemma 4.1] we get that

S f(t) = D(t)

∫
G\T

f(gtg−1) dg,

where D(t) = δ(t)−1/2 · |det(Adu(t)− 1| . We can compute

D(t)2 = |det(Adu(t)− 1)|2F · |det(Adu(t))|−1
F

= |det(Adu(t)− 1)|F ·
∣∣det(Adu(t

−1)− 1)
∣∣
F

= |det(Adu(t)− 1)|F · |det(Adu−(t)− 1)|F .

Here u− is the nilpotent subalgebra of g opposite to u relative to t, so that g = u ⊕ t ⊕ u−. The last
equality holds because the weights in u⊗F F are the inverses of the weights of u− ⊗F F .

From the decomposition of g that we stated, we get that

D(t) =
∣∣det(Adg/t(t)− 1)

∣∣1/2
F

.

Therefore D is invariant under precomposition with conjugation by elements of N(T ).

Let now x ∈ N(T )∩K, f ∈ H(G(F ),K) and t ∈ T (F ) regular. The element x acts by inner automorphism
on G and T and leaves invariant their Haar measures. Therefore, it leaves invariant the Haar measure on
G/T. Hence ∫

G\T
f(g(xtx−1)g−1) dg =

∫
G\T

f((x−1gx)t(x−1g−1x)) dg =

∫
G\T

f(gtg−1) dg,
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where there last inequality comes from the fact that f is K bi-invariant. So we proved that the image of S

is in H(T (F ), T (F ) ∩K)W .

What is left to show is that S is an actual bijection. We know that a basis of H(G(F ),K) is given by
the characteristic functions on the double cosets of K. From the Cartan decomposition, we get that a basis
is given by

{χKvK}v∈WK\W̃/WK
,

where WK is the type of K as a parahoric subgroup of G(F ). We are going to denote χKvK just by χv.

The embedding of T in NG(T ), induces a bijection between WK\W̃/WK and the set W\T (F )/T (OF )

[HR10, Theorem 1.0.3]. From now on we are going to identify this two sets under this bijection. We denote the
characteristic function χT (F )∩KvT (F )∩K on a K double coset of T (F ) by χ′

v. A basis of H(T (F ), T (F )∩K)W

is given by {
bv :=

1

|W (v)|
∑
w∈W

χ′
wvw−1

}
v∈W\T (F )/T (OF )

,

where W (v) is the stabilizer of v in W.
We define the infinite matrix {c(v, v′)}

v,v′∈WK\W̃/WK
by

S χv′ =
∑

v∈WK\W̃/WK

c(v, v′)bv.

Then, if t ∈ KvK we have

c(v, v′) = S χv′(t) = δ(t)−1/2µ(Kv′K ∩ UvK).

Kv′K ∩ UvK is empty unless v′ − v is a linear combination with non-negative real coefficients of positive
roots. We can choose a suitable lexicographic order so that c(v, v′) = 0 unless 0 ≥ v′ ≥ v. Moreover,
KvK ∩ UvK ⊃ tK, so c(v, v) ≥ δ(t)−1/2 and it is not 0. Therefore our infinite matrix is "upper triangular"
and S is a bijection. For further details about the last paragraph we refer to [Car79, Theorem 4.1], for a
more general and recent approach we refer to [HR10].

Thanks to the Satake isomorphism, we can now construct a map LLur : Πur(G)→ Φur(G). Let (π, V ) ∈
Πur(G) be a K-spherical representation with K a hyperspecial maximal compact subgroup of G(F ). Then V
is an H(G,K) ∼= H(T (F ),K ∩ T (F ))W -module for some maximal torus T in G, so S (π, V ) is an unramified
representation of T. We can now apply LLT 1.18 to get an unramified L-parameter φπ of T, and since
LT ⊂ LG, we can view φπ as an unramified L-parameter of G. We define LLur to be the map π 7→ φπ.

The unramified L-packets Now we want to describe the L-packet Πφχ
(G) = Πφχ

= LL−1
ur (φχ) for χ an

unramified character of a maximal torus T of G (here we are seeing φχ as an L-parameter of G via LT ⊂ LG).
We will follow [Key87] for an introduction on the R-group. Some non-trivial harmonic analysis on p-adic
reductive groups is used, and, since this is not going to be relevant to this thesis, we are just going to reference
[Sil79] or [Sil78].

We start by saying what is known for GLn:

Proposition 1.21. The Satake isomorphism induces a bijection between Πur(GLn) and Φur(GLn).

Proof. First we recall that in GLn(F ) there is only one hyperspecial maximal compact subgroup up to
conjugacy, and a representative is given by K = GLn(OF ). Let T be the torus consisting of diagonal matrices.
Then the Hecke algebra H(T (F ), T (OF )) is isomorphic to C[X∗(T )] (to show this is enough to notice that
the valuation map ωT is surjective in the case of split tori).
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The dual torus T̂ is Spec(C[X∗(T )]). Then homomorphisms C[X∗(T )]
W → C correspond to W -conjugacy

classes of elements in T̂ (C). These conjugacy classes, in turn, are in bijection with the conjugacy classes
of diagonalizable elements in GLn(C). Finally, these conjugacy classes are in bijection with the unramified
L-parameters, since these are determined just by the image of Frobenius up to conjugacy. At the same time,
by the Satake isomorphism, maps C[X∗(T )]

W → C correspond to maps H(GLn(F ),GLn(OF )) → C, and
therefore to irreducible H(GLn(F ),GLn(OF ))-modules. This gives us a bijection Πur(GLn)→ Φur(GLn).

The case of GLn is the easiest one after the case of tori. In fact, it is not generally true that Πur(G)

and Φur(G) are in bijection for a general group G. The reason is that two different representations that
are unramified for two different classes of hyperspecial maximal compact subgroups might correspond to the
same L-parameter.

For the rest of this section, we are going to denote S ⊂ G a split maximal torus, T := CentG(S) ⊂ G and
we fix a Borel subgroup B = TU containing T with unipotent radical U .

Definition 1.22. Let χ be an unramified character of T (F ). Then we call the normalized parabolic induction
I(χ) := iGBχ the unramified principal series associated to χ.

The unramified principal series of an unramified character χ is the fundamental tool to understand the
L-packet Πφχ

. Note that if we fix K a hyperspecial maximal compact subgroup of G(F ) that is the stabilizer
of a vertex in A(S), then we can use the Iwasawa decomposition G(F ) = B(F )K to see that the fixed-point
set of K in I(χ) is one dimensional. It follows that I(χ) has at most one irreducible subquotient with nonzero
fixed vectors under K.

Remark 1.23. We have an equality between Πφχ
and the set of irreducible unramified subquotients of I(χ).

This comes as a corollary of the description of unramified representation via spherical functions [Car79,
Section 4]. LetK be a hyperspecial maximal compact subgroup of G(F ) that is the stabilizer of a hyperspecial
vertex in A(S). Then every K-spherical representation V is of the form VΓ for some K-spherical function Γ

[Car79, Theorem 4.3], and every K-spherical function Γ is of the form Γχ′ for some K-unramified character
χ′ of T [Car79, Theorem 4.2]. Finally it is shown that every representation VΓχ

appears as a subquotient of
I(χ) and it is the unique K-spherical subquotient.

Proposition 1.24. Let χ be any unramified character of T (F ).

1. If χ is unitary and regular (i.e. w · χ ̸= χ for every w ∈W ), then I(χ) is irreducible.

2. Let w ∈ W . The representations I(χ) and I(w · χ) have the same Harish-Chandra character, hence
they are isomorphic if they are irreducible.

3. The H(G)-module I(χ) is of finite length.

Proof. The proof can be found in [Car79, Theorem 3.3].

Now we are going to introduce the tool that is going to connect Πφχ to Irr(π0(Sφχ)): the R-group.
Let B = TU be the Borel subgroup opposite to B with respect to T , with unipotent radical U . Then we

can define the intertwining operators

A(w,χ) : I(χ)→ I(w · χ)

A(w,χ)(f)(g) :=

∫
U(F )∩wU(F )w−1

f(guw)du ∀g ∈ G,

for ever w ∈W and for χ belonging to an appropriate set of cocharacters. Moreover, they can be analytically
continued so that they are defined for every unitary character. These operators satisfy the cocycle condition

A(w1w2, χ) = A(w1, w2χ)A(w2, χ)

11



if w1, w2 satisfy
l(w1w2) = l(w1) + l(w2);

here l(w) is the length of w in the Coxeter group W .
We now define the normalized intertwining operators

A(w,χ) :=
1

cw(χ)
A(w,χ)

where cw is the Harish-Chandra c-function defined as in [Sil79] or [Wal75, Section 7]. We define

Wχ := {w ∈W | w · χ = χ}.

Theorem 1.25 (Harish-Chandra). Let χ be a unitary character of T (F ). Then the algebra End(I(χ)) is
spanned by the operators

{A(w,χ) | w ∈Wχ}.

Proof. The proof can be found in [Sil79, Theorem 5.5.3.2].

Remark 1.26. Notice that if χ is regular, then Wχ is trivial and End(I(χ)) is generated by A(1, χ), showing
that I(χ) is irreducible.

We define now W ′ = W ′
χ to be the subgroup of Wχ for which A(w,χ) is a scalar. Moreover we define

∆′
χ := {α root | sα ∈W ′

χ}.

Theorem 1.27 (Knapp-Stein dimension theorem). Suppose χ is a unitary character of T (F ). Then the
dimension of the commuting algebra End(I(χ)) is [Wχ :W ′

χ].

Proof. The proof is [Sil78].

We can define the R-group:

R = Rχ := {w ∈Wχ | α > 0 and α ∈ ∆′
χ imply that wa > 0}.

Then
Wχ =W ′ ⋊Rχ.

This means, from Harish-Chandra’s theorem 1.25 and the dimension theorem 1.27 that the intertwining
operators

{A(w,χ)}w∈Rχ

form a linear basis of End(I(χ)).
By Schur’s Lemma, the intertwining operators satisfy the cocycle relation with no condition on the lengths

of the Weyl group elements, up to a scalar. We define a 2-cocycle η of the Weyl group by

A(w1w2, χ) = η(w1, w2)A(w1, w2 · χ)A(w2, χ).

Then the commuting algebra End(I(χ)) is isomorphic to the group algebra Cη[Rχ], with multiplication
twisted by the 2-cocycle η.

Theorem 1.28. Suppose that the intertwining operators corresponding to the simple reflections {sα}α∈R(G,T )

are normalized so that
A(sα, sαχ)A(sα, χ) = Id .

Then η ≡ 1, i.e. the cocycle relation holds with no condition on the lengths of the Weyl group elements.
Moreover, this normalization is always possible.
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Proof. This was shown by Keys in [Key82a, Chapter 1, Section 2, Theorem 2].

Proposition 1.29. Suppose χ is a unitary character of T (F ). Then:

1. The commuting algebra End(I(χ)) is isomorphic to the group algebra C[R];

2. I(χ) decomposes with multiplicity one if and only if Rχ is abelian;

3. The inequivalent irreducible components πi of the representation I(χ) of G are parametrized by the
irreducible representations ρi = ρ(πi) of Rχ;

4. The multiplicity with which a component πi occurs in I(χ) is equal to the dimension of the representation
ρi which parametrizes it.

Remark 1.30. In [Key82a] Keys showed that Rχ is always abelian for types Bn, Cn, E6, F4 and G2, but for
other types, it can be non-abelian. But if we assume that χ is unramified (and this is the case we are
interested in) then Rχ is always abelian. This was shown by Keys in [Key82b] if G is simply connected,
almost simple and semi-simple, and by Mishra [Mis13, Corollary 10] for general G.

Proof. The proof of this can be found in [Key87]. The first two statements are clear since η ∼= 1, and third
and fourth come from results on the group algebra of a finite group.

Therefore we have a connection between Πφχ
and the irreducible representation of Rχ. What we need

now is a bijection between Rχ and π0(Sφχ
). We will first need the following lemma:

Lemma 1.31. Let χ a unitary character of T (F ). Let A be the connected component of the identity in the
Weil group invariants T̂WF of T̂ and let N be the normalizer of T̂ in Ĝ. Then:

1. The centralizer of A in Ĝ is T̂ ;

2. A is a maximal torus of S◦
φχ

;

3. T̂ ∩ Sφχ
= A · Z(Ĝ)WF ;

4. T̂ ∩ S◦
φχ

= A;

5. N ∩ Sφχ
is the normalizer of A in Sφχ

.

Proof. This is [Key87, Lemma 2.5]

Proposition 1.32. Let χ a unitary character of T (F ). Let A and N as in Lemma 1.31. Then the following
sequence is exact:

1→ (N ∩ S◦
φχ

)/A→ (N ∩ Sφχ
)/A · Z(Ĝ)WF → π0(Sφχ

)→ 1.

Moreover, the middle term in the exact sequence can be identified with the stabilizer Wχ of χ in the Weyl
group of G, and π0(Sφχ

) ∼= Rχ.

Proof. We follow [Key87, Theorem 2.6]. The fact that the sequence makes sense comes from Lemma 1.31.
To prove that the second map is surjective, let s ∈ Sφχ

. This element normalizes S◦
φχ

and sAs−1 is a
maximal torus of S◦

φχ
. So, since all maximal tori in S◦

φχ
are conjugate, there is an element t ∈ S◦

φχ
such that

sAs−1 = tAt−1. Therefore t−1s normalizes A and thus T̂ . This means that t−1s has the same image as s.
The injectivity of the first map and the exactness in the middle are clear.

What we need to show is that the middle term can actually be identified with Wχ.
From the Langlands correspondence for tori, one sees that Wχ = {w ∈ W | w · φχ is equivalent to φ}.

Let w ∈W and n ∈ N(C) a representative for w, where w is seen as WF -invariant element of the Weyl group
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of T̂ . From [Bor79, Lemma 6.2] we know that w · φχ is equivalent to Inn(n) ◦ φχ; therefore w fixes χ if and
only if Inn(n) ◦ φχ is equivalent to φχ. This means that there is t ∈ T̂ (C) such that tn ∈ Sφχ . Therefore

Wχ = (N ∩ Sφχ
)T̂ /T̂ = (N ∩ Sφχ

)/A · Z(Ĝ)WF .

Since the first term of the sequence is the Weyl group W (S◦
φχ
, A), then π0(Sφχ

) =Wχ/W (S◦
φχ
, A).

What is left to do is to identify W (S◦
φχ
, A) with the subgroup W ′

χ of Wχ, but we omit the proof of this
fact. To prove this Keys uses an explicit description of the roots in W ′

χ using Plancherel factors.

Remark 1.33. The last theorem gives us the bijection between Πφχ and Irr(π0(Sφχ)). Namely, Πφχ is in
bijection with the characters of Rχ by Proposition 1.29, and Irr(π0(Sφχ

)) is in bijection with the same set
by Proposition 1.32. However, this bijection does not tell us which character of Rχ corresponds to which
representation in Πφχ

. An answer to this question is given in [Mis13, Theorem 1], where Mishra, given a
character ρ of Rχ, specifies the various hyperspecial subgroups K for which the K-spherical subquotients of
I(χ) corresponds to ρ.

2 The local Langlands conjecture for disconnected groups

In this chapter we state the local Langlands conjecture for disconnected reductive groups, following
[Kal22]. By a disconnected reductive group, we mean a disconnected algebraic group whose identity com-
ponent is reductive. We restrict our attention to the groups G̃ such that there exists an isomorphism of
F -groups

G̃ ∼= G⋊A,

where G/F is a connected reductive group and A is a finite group acting on G by automorphisms which
preserve a fixed F -pinning. If G is a connected (quasi)split reductive group over F and A acts on G preserving
an F -pinning, then we say that the F -group G⋊A is a (quasi)split disconnected reductive group.

Example 2.1. The easiest example of a disconnected reductive group is the normalizer of the standard torus
T of diagonal matrices in GLn . Indeed, we have a splitting short exact sequence

1→ T → NGLn(T )→ NGLn(T )/T
∼= Sn → 1,

with the splitting Sn → GLn given by the permutation matrices in GLn. Therefore, NGLn
(T ) ∼= T ⋊ Sn.

An example of a disconnected group that is not of the form G ⋊ A is the normalizer of the torus T ′ of
diagonal matrices inside SL2 . The exact sequence

1→ T ′ → NSL2
(T ′)→ S2 → 1

does not split.

From now untill the end of this thesis, we fix a quasi-split disconnected reductive group G̃ ∼= G ⋊ A

with an A-fixed pinning (B, T, {xα}α) of G. We denote B̃ := B ⋊ A and T̃ := T ⋊ A. Let Ĝ be the
complex dual of G. We fix the ΓF -invariant pinning (B̂, T̂ , {x̂α}α) of Ĝ dual to the A-fixed pinning of
G. We let the group A act on Ĝ by fixing this pinning. This means that the action of A on Ĝ comes
from the isomorphism Aut(G,B, T ) ∼= Aut(Ĝ, B̂, T̂ ). More precisely, given an element a ∈ A, we have the
automorphism a∗ of X∗(T ) given by (a∗λ)(x) = a(λ(x)) for every x ∈ Gm and every λ ∈ X∗(T ). We let
a ∈ A act on T̂ (C) = Hom(X∗(T ),C×) by (a · t)(λ) = t(a−1

∗ λ) for t ∈ T̂ (C) and λ ∈ X∗(T ).

We can now begin to formulate a local Langlands conjecture for quasi-split disconnected groups. First we
need to define which class of representations of G̃ we are interested in.
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Definition 2.2. A representation of G̃ is called G-tempered if its restriction to G contains a tempered
representation. We denote the set of G-tempered irreducible smooth representations of G̃ by Πtemp(G̃).

In [Kal22, Section 4.6], Kaletha proposes to parametrize G-tempered representation of G̃ with pairs (φ, ρ)
where φ is again an L-parameter φ : WDF → LG, and ρ is again an irreducible representation of a finite
group. The differences with the connected case are the equivalence relation on the set of L-parameters, and
consequently, the finite group that should parametrize the L-packets.

First of all, two L-parameters are going to be G̃-equivalent if they are Ĝ⋊A-conjugate. We are going to
denote the set of L-parameters up to G̃-equivalence by Φ(G̃). Secondly, given an L-parameter φ, we define

S̃φ := Cent(φ, Ĝ⋊A) = Cent(φ(WDF), Ĝ⋊A).

Notice that from the split short exact sequence

1→ G→ G̃→ A→ 1

we get the short exact sequence
1→ Sφ → S̃φ → Aφ → 1, (2)

where Aφ is the stabilizer of the Ĝ-conjugacy class of φ in A. Moreover, this sequence leads to the exact
sequence

1→ π0(Sφ)→ π0(S̃φ)→ Aφ → 1. (3)

Conjecture (Disconnected unrefined LLC): There exists a map L̃L : Πtemp(G̃) → Φtemp(G̃) where
Φ̃temp(G̃) is the set of equivalence classes of tempered L-parameter. We require L̃L to have finite fibers.
Moreover, if we denote the fiber of φ ∈ Φtemp(G̃) by Π̃φ, we require Π̃φ to be in bijection with the set
Irr(π0(S̃φ), Id) of those irreducible representations of π0(S̃φ) which restricted to π0(Z(Ĝ)

ΓF ) contain the
identity.

As in the connected case, this conjecture has been further refined to the case of inner forms of quasi-split
disconnected groups. If the reader is interested, the refined conjecture can be found in [Kal22, Conjecture 4.2,
Conjecture 5.12]. Moreover, Kaletha conjectures a compatibility between the connected and the disconnected
correspondence. In particular, he asks for a G-tempered representation of G̃(F ) to be in Π̃φ if and only if its
restriction to G(F ) intersects Πφ. This can be found in [Kal22, Conjecture 7.1, Remark 7.2].

Remark 2.3. We want to point out that the classical local Langlands conjecture could have still been phrased
using the notation Irr(π0(Sφ), Id) instead of Irr(Sφ). Here by Irr(π0(Sφ), Id) we mean the set of irreducible
representations of π0(Sφ) which contain the identity when restricted to π0(Z(G)ΓF ). The first notation is
better if one wants to generalize the conjecture to the case of non-quasi-split groups.

2.1 The conjecture for tori

In this section we study the conjecture in the case in which G = T is a torus. We start by giving some
examples of disconnected quasi-split tori. We have already seen that an example is the normalizer of the
torus T of diagonal matrices in GLn .

Example 2.4. Every action of a finite group A on a n-dimensional split torus T corresponds to an action of
A on the lattice of character X∗(T ), and vice versa. Therefore to find actions of finite groups on T , we can
look for finite subgroups of GLn(Z). For example, for n = 2, we can consider the map on Z2 ∼= Z[ω] with [ω]

a root of x2 + x+1, given by multiplication by [ω]. This map sends 1 7→ ω and ω 7→ −1−ω, so it is given by
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the matrix x =
(
0 −1
1 −1

)
. This is a matrix of order 3, and we have a map from Z/(3) → GLn(Z) with image

the subgroup generated by x. This map corresponds to the action of Z/(3) on G2
m given by

(t1, t2) 7→

(
t2 0

0 t−1
1 t−1

2

)
.

We give now an example of a quasi-split disconnected torus that is not split. We consider the quasi-split
torus T ′/Qp defined as follows: for every Qp-algebra R, we have

T ′(R) := {
(

a b
pb a

)
| a, b ∈ R}.

This is a torus since, after fixing an algebraic closure Qp, we have an isomorphism T ′(Qp)→ G2
m(Qp) given

by sending
(

a b
pb a

)
7→
(

a+b
√
p 0

0 a−b
√
p

)
. But T ′ is not split, since T ′(Qp) ∼= (Qp[

√
p])× with isomorphism given

by sending
(

a b
pb a

)
7→ a+ b

√
p.

We have two natural automorphisms on (Qp[
√
p])× consisting of taking the inverse or acting via the Galois

group. In both cases, we get an action of Z/(2) on T ′.

In [Kal22, Section 8] the correspondence for tori is studied in the general setting of inner forms of T ⋊A.

Since these inner forms might not be quasi-split, the proof in this general setting is rather complicated. This
is why we present an explicit description of the correspondence for the much easier case of split tori. In this
case, everything can be understood using just some Clifford theory. We are going to use some facts from
[Ser77]. Here Serre works with finite groups, but all his arguments extend to our case straightforwardly.

Let T̃ ∼= T ⋊ A be a split disconnected torus with A finite and T an n-dimensional split torus, and let π̃
be a smooth irreducible T -tempered representation of T̃ (F ). From [Ser77, Section 8.2, Proposition 25], we
know that π̃ is of the form

Ind
T̃ (F )
T (F )⋊Aπ

(π ⊠ ρ),

with π an irreducible representation of T (F ), Aπ := {a ∈ A | π(a · t) = π(t)} and ρ ∈ Irr(Aπ). Moreover,
every representation of this form is going to be an irreducible representation of T̃ (F ). We are going to use
the notation T̃ (F )π := T (F )⋊Aπ. We want to understand the restriction of π̃ to T (F ).

Using a classical result from Clifford theory [Ser77, Section 7.3, Proposition 22] we get that

Res
T̃ (F )

T̃ (F )π
π̃ =

⊕
a∈T̃ (F )π\T̃ (F )/T̃ (F )π

(π ⊠ ρ)a,

with (π ⊠ ρ)a(x) = (π ⊠ ρ)(axa−1), for every x ∈ T (F )π.
We define L̃LT̃ to be the map that sends π̃ to φπ. Notice that if π̃ is smooth/admissible/tempered, so is

π, and so is πa for every a ∈ T̃ (F )π\T̃ (F )/T̃ (F )π.
First, we will check that φπa and φπ are conjugate under A for every a ∈ T̃ (F )π\T̃ (F )/T̃ (F )π, and

therefore they correspond to the same element in Φ̃(G̃). We look at the bijection for split connected tori that
we have already discussed:

Hom(T (F ),C×) ∼= Hom(F× ⊗X∗(T ),C×) ∼= Hom(F×,C× ⊗X∗(T̂ )).

If π is sent to some map f ∈ Hom(F× ⊗ X∗(T ),C×) under the first isomorphism, then πa is going
to be sent to the map fa defined by sending x ⊗ (s1, . . . , sn) 7→ f

(
x⊗ a−1 · (s1, . . . , sn)

)
, for every x ∈

F×, (s1, . . . , sn) ∈ X∗(T ). Now we want to apply the second isomorphism to f and fa. If f is sent to some
map f ′ ∈ Hom(F×, X∗(T̂ ) ⊗ C×), then fa is sent to a−1 · f ′. But this is exactly how we have defined the
action of a−1 on T̂ (C). Hence, φπ = a−1 · φπa .

So the map that sends π̃ to an L-parameter associated to an irreducible component of its restriction to
T (F ) is well defined up to Ĝ(C)⋊A-conjugacy. Defining L̃LT̃ like this, we have a canonical bijection between
Πφπ

and Irr(Aπ).
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Now we want to compute Sφπ . We know that T (F ) centralizes Im(φπ), so T (F ) ⊂ Sφπ . Moreover, the
elements of A that centralize Sφπ are exactly the ones in Aπ. Therefore we get that S̃φπ

∼= T (F ) ⋊ Aπ. So
we have another canonical bijection Irr(π0(S̃φπ

)) ∼= Irr(Aπ), and we get a canonical bijection

Πφπ
∼= Irr(π0(S̃φπ )).

This defines a map L̃LT̃ and finishes the proof of the conjecture in the case of split tori.

Remark 2.5. Notice that we have a canonical isomorphism π0(S̃φπ
) ∼= Aπ coming from the sequence 3 since

Aπ = Aφπ and the L-packets for connected tori are empty.

Remark 2.6. If T is just quasi-split, a similar argument can be made: instead of following the explicit map
LLT , we can just use its functoriality to conclude. Functoriality of LLT can be found in [Yu09, Section 7.5].

Remark 2.7. Everything we said for tori is just a particular case of the more general proof of Kaletha in
[Kal22, Section 8] for the case of inner forms of quasi-split tori.

3 The disconnected unramified local Langlands correspondence

In this chapter, we will define a correspondence in the case of unramified representations of disconnected
reductive groups. From now on, we will assume G̃ is unramified. By this, we mean that G is unramified.

Definition 3.1. We call a representation (π̃, V ) of G̃(F ) unramified if V K ̸= 0 for some hyperspecial
maximal compact subgroup K of G(F ) or, equivalently, if its restriction to G(F ) contains an unramified rep-
resentation. We denote the set of irreducible unramified representations of G̃(F ) by Πur(G̃(F )). Analogously,
we can define the notion of K-spherical representations of G̃(F ).

As in the connected case, if K is a hyperspecial maximal compact subgroup of G(F ), then an irreducible
K-spherical representation of G̃(F ) is the same as a simple H(G̃(F ),K)-module.

Remark 3.2 (Unramified correspondence for tori). Notice that in the case of tori, the map L̃LT̃ restricts to
a correspondence between unramified representations and unramified L-parameters.

Definition 3.3. Let π̃ be an unramified representation of G̃(F ). We denote by π the unramified represen-
tation contained in π̃|G(F ). Notice that π is only defined up to precomposition with conjugation with an
element of A. We will denote with aπ the representation defined by aπ(x) = π(axa−1). We define the map

L̃Lur : Πur(G̃)→ Φur(G̃)

that takes π̃ and sends it to φπ. Here Φur(G̃) is the set of unramified L-parameter ofG up to Ĝ⋊A-conjugacion.
Notice that this map is well defined since φπ and φπa are equivalent up to Ĝ⋊A-conjugacy.

From now on, we fix K a hyperspecial maximal compact subgroup of G(F ) and we assume that K is the
stabilizer of a point x ∈ A(S) with S the maximal split torus in the A-fixed torus T. If a ∈ A, we denote by
aK the hyperspecial maximal compact subgroup obtained aKa−1.

Remark 3.4. We have a disconnected Cartan decomposition of G̃(F ) given by

G̃(F ) ∼=
⊔

a∈A,

w∈WK\W̃/WK

Kwa a−1

K,

where WK is the type of K, as in Theorem 1.19.
Notice that this Cartan decomposition becomes particularly nice in the case in which K is A-fixed. We

just get
G̃(F ) =

⊔
a∈A,

w∈WK\W̃/WK

KwaK.
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This means that we have an easy base of the Hecke algebra H(G̃(F ),K) given by the characteristic functions
χwa := χKwaK .

Proposition 3.5. Assume K is A-fixed. Then we have an isomorphism of C-algebras

ξG : H(G(F ),K) ⊗̃ C[A] ∼−→ H(G̃(F ),K).

Here ⊗̃ is what is called a crossed product in [MW98]. The product structure is defined as follows: for
every a, a′ ∈ A and χu, χv ∈ H(G(F ),K),

(χu ⊗ a)(χv ⊗ a′) = (χu ∗ χava−1 ⊗ aa′).

The idea for this lemma comes from [Iwa66, Section 5, first proposition]. Iwahori works with generalized
Tits system but his statement and ours can be proved similarly, using the disconnected Cartan decomposition
instead of the Bruhat decomposition for generalized Tits system. We point out that in his paper Iwahori
does not actually prove the statement. So this proof can be translated in a proof for his statement as well.

Proof. We define the map H(G(F ),K) ⊗̃ C[A] ξG−−→ H(G̃(F ),K) as χu⊗a 7→ χua. We want to prove that this
is an isomorphism of algebras. It is surjective and injective thanks to the disconnected Cartan decomposition.
In particular, the injectivity comes from the fact that the union is disjoint. What we need to prove is that
the map is an algebra homomorphism.

Pick χu ⊗ a and χv ⊗ a′ two elements in H(G(F ),K) ⊗̃ C[A]. We denote by mw
u,v the number of cosets

Kx contained in Ku−1Kw ∩KvK.
Then

ξG
(
(χu ⊗ a)(χv ⊗ a′)

)
= ξG(χu ∗ χava−1 ⊗ aa′) = ξG

( ∑
w∈WK\W̃/WK

mw
u,ava−1χw ⊗ aa′

)
=

∑
w∈WK\W̃/WK

mw
u,ava−1χwaa′ .

On the other hand, the convolution

ξG(χu ⊗ a) ∗ ξG(χv ⊗ a′) = χua ∗ χva′ =
∑
b∈A,

w∈WK\W̃/WK

mwb
ua,va′χwb.

First, we want to prove that if b ̸= aa′ then mwb
ua,va′ = 0. We need to count the cosets of the form Kx in

the intersection Ka−1u−1Kw ∩Kva′b−1K. If b ̸= aa′, then Ka−1u−1Kw is contained in the coset G(F )a−1

of G̃(F ), and Kva′b−1K is contained in the coset G(F )a′b−1. Therefore the intersection must be empty and
mwb

ua,va′ = 0.

To conclude the proof, we need to show that if b = aa′ then mwb
ua,va′ = mw

u,ava−1 . Let C denote the set
of cosets of the form Kx contained in Ka−1u−1Kwaa′ ∩ Kva′K ⊂ G(F ) and let D the set of cosets Ky
contained in Ku−1Kw ∩ Kava−1K. Then the map from C to D that sends Kx to Kaxaa′ is a bijection
between C and D, proving the desired statement.

Remark 3.6 (Disconnected Satake isomorphism). This isomorphism gives us a link between K-spherical
representations and unramified representations of a torus, as in the connected case. The map

S̃ = S ⊗ Id : H(G(F )(F ),K) ⊗̃ C[A]→ H(T (F )(F ), T (F ) ∩K)W ⊗̃ C[A]

is an algebra isomorphism.
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We just need to show that it is an algebra homomorphism. Let χu ⊗ a, χv ⊗ a′ ∈ H(G(F ),K) ⊗̃ C[A].
Then

S
(
(χu⊗a)(χv⊗a′)

)
= S (χu∗χava−1⊗aa′) =

( ∑
w∈WK\W̃/WK

c(w, u)bw
)
∗
( ∑
w∈WK\W̃/WK

c(w, ava−1)bw
)
⊗aa′,

where c is the same as in the proof of Theorem 1.20. On the other hand

S (χu ⊗ a)S (χv ⊗ a′) =
( ∑
w∈WK\W̃/WK

c(w, u)bw
)
∗
( ∑
w∈WK\W̃/WK

c(w, v)bawa−1

)
⊗ aa′.

Therefore, if
∑

w∈WK\W̃/WK
c(w, v)bawa−1 =

∑
w∈WK\W̃/WK

c(w, ava−1)bw we are done. This is true since
c(w, u) = µ(KuK ∩ U(F )wK) and since the unipotent radical U of B is fixed under the action of A.

Remark 3.7. Notice that the assumption of K to be A-fixed is not as restrictive as it might seem. In fact,
G(F ) must have an A-fixed hyperspecial maximal compact subgroup K corresponding to a vertex in A(S).
This is true since A acts via pinned automorphisms.

Remark 3.8. Notice that we have a commutative diagram

H(G̃(F ),K) H(G(F ),K) ⊗̃ C[A]

H(G(F ),K)

ξG

with diagonal arrows given by the obvious inclusions. Therefore for studying irreducible K-spherical repre-
sentation of G̃(F ), we can just study simple H(G(F ),K) ⊗̃ C[A]-modules whose restriction to H(G(F ),K)

contains an unramified representation.

Theorem 3.9 (Theorem 1.3.[MW98]). Let π be a simple H(G(F ),K)-module, Aπ its stabilizer in A. There is
an equivalence between the category of C[Aπ]-modules and the category of those H(G(F ),K) ⊗̃ C[A]-modules
whose restriction to H(G(F ),K) is isomorphic to a direct sum of copies of conjugates of π. This equivalence
is defined by

ρ 7→
(
H(G(F ),K) ⊗̃ C[A]

)
⊗H(G(F ),K) ⊗̃ C[Aπ ]

(π ⊗ ρ) =: Ind
H(G(F ),K) ⊗̃ C[A]

H(G(F ),K) ⊗̃ C[Aπ ]
(π ⊗ ρ)

for every simple C[Aπ]-module ρ.

Remark 3.10. All of this can be translated in terms of representation of groups, obtaining the same result
that we would have obtained using the classification of representation of quasi-split tori and Remark 3.6.
Notice that in this theorem we are implicitly using that H(G,K) is commutative in order to give π ⊗ ρ a
canonical structure of H(G(F ),K) ⊗̃ C[Aπ]-module.

Remark 3.11. In [MW98] they work with the crossed product of a finite dimensional algebra H with the
group algebra of a finite group A, but they never use that H is finite dimensional to prove this theorem.
They just reference [Dad86] and in this paper H is not required to be finite-dimensional. In particular, this
theorem is a corollary of [Dad86, Theorem 10.6, Corollary 11.16].

Theorem 3.12. Assume that G is adjoint, let φ ∈ Φur(G̃) and let K be an A-fixed hyperspecial maximal
compact subgroup. If there is a bijection Πφ

∼= Irr(π0(Sφ), Id), then the map L̃Lur defines a map from Πur(G̃)

to the set Φur(G̃), and Π̃φ is in bijection with Irr(π0(S̃φ)).

Proof. Notice again that we can always find an A-fixed hyperspecial maximal compact subgroup (Remark
3.7). Since all the hyperspecial maximal subgroups ofG(F ) are conjugate the set of unramified representations
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of G̃(F ) is just the set of spherical representations with respect to a fixed hyperspecial maximal compact
subgroup. We study the K-spherical representations. Let now π̃ be a K-spherical representation of G̃(F )
such that the restriction to H(G(F ),K) contains an irreducible unramified representation π. Applying ξG

to π we get a simple H(G(F ),K) ⊗̃ C[A]-module. From Theorem 3.9 we have that the fiber L̃L
−1

ur (φπ) is in
bijection with Irr(Aπ).

We recall now that we have a short exact sequence

1→ π0(Sφπ )→ π0(S̃φπ )→ Aφπ → 1,

and we notice that Aφπ = Aπ. Since G is adjoint π0(Sφπ ) is trivial, therefore Irr(π0(S̃φ)) is in bijection with
Irr(Aφπ ) = Irr(Aπ). Therefore L̃Lur induces a bijection

Π̃φ → Irr(π0(S̃φ)).

Remark 3.13. Notice that the only thing that we use in this proof is that π0(Sφ) is trivial and that all the
hyperspecial maximal compact subgroups are conjugate. Therefore the theorem applies to G = GLn as well.

Example 3.14. We compute one very easy explicit example. Let G = GL2 /Qp and let A =
〈
σ
〉

be a group of
order 2 acting on G via σ · x = x

det(x) . Let φ an unramified L-parameter with φ(frob) = (a, b) ∈ T̂ (C) with
T the torus of diagonal matrices in GL2 . Then

〈
σ
〉φ is trivial if a ̸= b−1 and it is everything otherwise. Now

we move to the representation theory side. Since the following diagram commutes

H(G(F ),K) ⊗̃ C[A] H(T (F ), T (F ) ∩K)W ⊗̃ C[A]

H(G(F ),K) H(T (F ), T (F ) ∩K)W

S̃

S

it is sufficient to work with representation of the torus T. Then

χφ(t1, t2) = aval(t1)bval(t2).

We are know looking for representations of T (F )⋊
〈
σ
〉

that contains χφ when restricted to T (F ). So we just
need to compute

〈
σ
〉
χφ
. Then

σχφ(t1, t2) = χφ(t
−1
2 , t−1

1 ) = a− val(t2)b− val(t1).

For this to be equal to aval(t1)bval(t2) for every t1, t2 ∈ Qp, we necessary need a = b−1. Therefore we get a
bijection Π̃φ → Irr(S̃φ) as desired.

3.1 Non-fixed hyperspecial subgroup

Now we study the case in which the hyperspecial maximal compact subgroups are not A-fixed. We start
by understanding what happens in the connected case.

LetK,K ′ be two hyperspecial maximal compact subgroups ofG(F ), that are not conjugate. For simplicity,
we assume that K and K ′ are stabilizers of two points in A(S). Let Gad := G/Z(G) be the adjoint group
of G and let Kad,K

′
ad be the images of K and K ′ respectively in Gad(F ). These are hyperspecial maximal

compact subgroups of Gad(F ), therefore there exists h ∈ Gad(F ) such that hKh−1 = K ′.

Proposition 3.15. Such an element h leads to an isomorphism

H(Gad,Kad)
h∗

−→ H(Gad,K
′
ad)

given by f(−) 7→ f
(
h−1(−)h

)
.
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Proof. The only thing that we need to check is that h∗ is an algebra homomorphism. We pick two elements
χKuK , χKvK ∈ H(Gad,Kad), and notice that h∗(χKuK) = χK′h−1uhK′ . Then

h∗
(
χKuK ∗ χKvK

)
(x) =

∫
KuK

χKvK(g−1hxh−1) dg = µ(KuK ∩ hxh−1Kv−1K)

for every x ∈ Gad(F ). On the other hand

h∗(χKuK) ∗ h∗(χKvK)(x) =

∫
G(F )

h∗(χKuK)(g)h∗(χKvK)(g−1x) dg = µ(h−1KuKh ∩ xh−1Kv−1Kh).

The measure of these two sets is the same since one is obtained from the other by conjugating with h−1 and
Gad(F ) is unimodular. So h∗ is an algebra homomorphism.

We want to "transport" this isomorphism to G. The map G(F ) → Gad(F ) is not surjective in general,
but the action of G on itself by conjugation, factors through an action of Gad on G. Therefore Gad(F ) acts
on G(F ). We denote the action of h on an element x ∈ G(F ) by by h · x. Since K and K ′ are not conjugate,
h ̸∈ Im

(
G(F )→ Gad(F )

)
, but we still have that h ·K = K ′.

Proposition 3.16. Such an element h induces again an isomorphism

H(G(F ),K)
h∗

−→ H(G(F ),K ′)

given by f(−) 7→ f (h · (−)) .

Proof. We check that this is an algebra homomorphism: doing similar computations as in the proof of
Proposition 3.15, it is sufficient to show that µ(h ·X) = µ(X) for every measurable subset X ⊂ G(F ). First,
we notice that the measure hµ given by hµ(X) = µ(h · X) is a Haar measure. In fact, if X ⊂ G(F ) and
g ∈ G(F ), then

hµ(gX) = µ(h · (gX)) = µ((h · g)(h ·X)) = µ(h ·X).

Therefore, hµ = cµ for some real number c. The proposition follows from the following claim:

Claim: There exists n ∈ N such that hn ∈ G(F )/Z(G(F )).

If the claim is true, then hn

µ = µ and so c = 1, and hµ = µ. We proceed to prove the claim: we first
assume that G is semisimple and we consider the exact sequence

1→ Z(G)(F )→ G(F )→ Gad(F )
δ−→ H1(F,Z(G)(F ))→ · · · .

Since G is semisimple, Z(G) is finite. Therefore, H1(F,Z(G)(F )) is torsion [Mil20, Chapter 2, Corollary 4.3].
So, if h ∈ Gad(F )), then δ(hn) = 0 for some n ∈ N meaning that hn ∈ Im(G(F )→ Gad(F )).

To conclude, if G is not semisimple, we can consider the same exact sequence using Gder = [G,G] instead
of G, getting that for some n ∈ N, hn ∈ Gder(F )/Z(Gder)(F ) ⊂ G(F )/Z(G)(F ).

Remark 3.17. Notice that after a suitable choice of h (h not in the image of the isogeny G(F )→ Gad(F )), the
isomorphism h∗G is compatible with LLur. By this, we mean that if π is an H(G,K)-module then φπ = φh∗π

up to Ĝ-conjugation.
We choose h to be an element in Gad(F ) that conjugates Kad and K ′

ad and fixes A(S), so that h ∈
NGad(Sad)(F ). We can always find such an h since, if I is the F -points of the Iwahori subgroup associated
to our A-fixed pinning, then

IWK′I = IhIWKIh−1I,

so h ∈ I\Gad(F )/I. From [KP23, Theorem 7.8.1] we have that the inclusion NGad(Sad) ↪→ Gad induces a
bijection

I\Gad(F )/I ←→ NGad(Sad)(F )/
(
Tad(F )

)0
.
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Therefore, h has a representative in I\Gad(F )/I that lies in NGad(Sad)(F ).

After this choice, h induces another isomorphism h∗T : H(T (F ), T (F ) ∩ K)W → H(T (F ), T (F ) ∩ K ′)W

that fits into the commutative diagram

H(G(F ),K) H(T (F ), T (F ) ∩K)W

H(G(F ),K ′) H(T (F ), T (F ) ∩K ′)W .

S

S

h∗ h∗
T

Clearly, H(T (F ), T (F )∩K)W is equal to H(T (F ), T (F )∩K ′)W since there is only one maximal compact
subgroup in T (F ). So h∗T is just twistingH(T (F ), T (F )1)W by some element in (NGad(Sad))(F ). If h ∈ Sad(F ),

then its action on T (F ) is trivial. So we can assume h ∈ NGad(Sad)/Sad(F ). But this is exactly the relative
Weyl group W of G, since the canonical surjection G → Gad induces an isomorphism NGad(Sad)/Sad ∼=
NG(S)/S. This means that h∗T is just the identity map on H(T (F ), T (F )1)W . Therefore φπ = φh∗π.

Proposition 3.15, Proposition 3.16 and Remark 3.17 show us that is not necessary to "understand" the
Hecke algebras H(G(F ),K) for every hyperspecial maximal compact subgroup K in order to understand
unramified representations of G(F ). It is sufficient to understand one of them and to have a family of well-
behaved isomorphism between the different Hecke algebras. Since in the disconnected case we understand
just one Hecke algebra, we would like to apply this approach to G̃.

Let K be again an A-fixed hyperspecial maximal compact subgroup of G(F ), and let {Ki}i∈I be the set
of hyperspecial maximal compact subgroups up to conjugacion. The first problem that we encounter is that
in general Gad does not act on G̃, therefore we do not have an isomorphism h̃∗G that makes the following
diagram commute

H(G̃(F ),K) H(G̃(F ),K ′)

H(G(F ),K) H(G(F ),K ′)

h̃∗

h∗

(4)

Assumption 1: From now on we will assume that the action of A on Z(G) is trivial.
We first look at what this assumption implies on the automorphic side. Since A fixes the center point-wise,

Gad acts on G̃ and an isomorphism h∗ like the one in Proposition 3.16 lifts to an isomorphism h̃∗ as in the
diagram 4.

For every Ki hyperspecial maximal compact subgroup of G(F ) that is not A-fixed, we fix an element
hi ∈ Gad(F ) that leads to isomorphisms

h∗i : H(G(F ),K)→ H(G(F ),Ki)

and
h̃∗i : H(G̃(F ),K)→ H(G̃(F ),Ki).

Let π be an irreducible, non-trivial H(G(F ),K)-module and let φπ be the associated L-parameter. Ap-
plying h∗i for some i ∈ I, we get an H(G(F ),Ki)-module h∗i π, and doing this for every i ∈ I we get the
entire Πφπ

by Remark 3.17. Therefore, in order to understand the set Π̃φπ
we need to understand how many

H(G̃(F ),Ki)-modules contain h∗i π when restricted to H(G(F ),Ki) for every i ∈ I. Using the commutative
diagram 4, we know that this is exactly the number of H(G̃(F ),K)-modules that contain π when restricted
to H(G(F ),K), and these are in bijection with Irr(Aπ) by Theorem 3.9.

Notice that this method might not give a full understanding of Π̃φπ
without being checked further. In

fact, it does not take into account that if a ∈ A \ Aπ, then aπ does not need to belong to Πφπ
, but an
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irreducible representation of G̃(F ) which restricted to G(F ) contains aπ will be in Π̃φπ . But this is not a
problem since if the restriction to G(F ) of a representation of G̃(F ) contains π then it will contain aπ as well.
On the other hand, if h∗i π ∼= ah∗jπ for some a ∈ Aπ, i ̸= j ∈ I, then if the restriction to G(F ) of an irreducible
representation of G̃(F ) contains h∗i π, it will not contain h∗jπ. This follows again from the description given in
[Ser77, Section 7.3, Proposition 22] for restrictions of representations of the semidirect product of two groups.
Therefore, Π̃φπ is in bijection with pairs (π′, ρ) with π′ ∈ Πφπ and ρ ∈ Irr(Aπ).

We now check what happens on the Galois side. Let φ an unramified L-parameter. Then the group
π0(Sφ) is abelian since the image of φ is determined by φ(frob) = (s0, frob) ∈ LG, and the centralizer of such
an element is always abelian [Ste68, Lemma 9.2]. But we do not know if the exact sequence

1→ π0(Sφ)→ π0(S̃φ)→ Aφ → 1

splits, therefore we can’t use the description of representations of the semidirect product of group used in
Section 2.1.

Let s := φ(frob) ∈ Ĝ(C). We are going to now add the following assumptions:
Assumption 2: From now on we will assume that G is semisimple and that a · s = s for every
a ∈ Aφ.

This assumption immediately imply that the sequence

1→ π0(Sφ)→ π0(S̃φ)→ Aφ → 1

splits, and we can use [Ser77, Section 8.2, Proposition 25] to get that every irreducible representation of
π0(S̃φ) is given by an irreducible representation α of π0(Sφ) and an irreducible representation ρ of Aφ

α.

Lemma 3.18. Under assumption 2, there is an embedding

π0(Sφ) ↪→ π1(Ĝ)/(1− s)π1(Ĝ),

where π1(Ĝ) is the algebraic fundamental group of Ĝ, defined as the kernel of the canonical central isogeny
Ĝsc → Ĝ, where Ĝsc is the universal cover of Ĝ. Moreover this embedding is A-equivariant.

Proof. First we check that A actually acts on π1(Ĝ). The action of A on Ĝ lifts to an action of Ĝsc. Moreover,
from the exact sequence

1→ π1(Ĝ)→ Ĝsc → Ĝ→ 1,

we get an exact sequence
1→ π1(Ĝ)→ T̂sc → T̂ → 1,

where T̂sc is the preimage of T̂ in Ĝsc. Now we have an action of A on X∗(T̂ ) and on X∗(T̂sc), therefore we
get an action on X∗(π1(Ĝ)) = X∗(T̂sc)/X

∗(T̂ ), and so an action on π1(Ĝ).
The embedding is a trivial corollary of [Ste68, Lemma 9.2], and the map is given by sending an element

x ∈ Sφ to x̃sx̃−1s−1, where x̃ ∈ Ĝsc and x̃ 7→ x under the canonical isogeny. Then, if x ∈ Sφ

a · x 7→ (a · x̃)(s(a · x̃)s−1)−1 = (a · x̃)(a · s(a · x̃−1)s−1) = a · (x̃sx̃−1s−1),

where the last equality is using that a · s = s.

Lemma 3.19. Under the assumptions 1 and 2, the action of Aφ on π0(Sφ) is trivial.

Proof. Thanks to Lemma 3.18, we just need to show that the action on π1(G) is trivial. We define π′
1(Ĝ) :=

X∗(T̂ )/X∗(T̂ad) and we call it the Borovoi fundamental group of Ĝ. Then

π′
1(Ĝ) = X∗(T̂ )/X∗(T̂sc) = X∗(T )/X∗(Tad) = X∗(Z(G)).

23



We know by assumption 1 that the action of A is trivial, therefore we have a trivial action of A on π′
1(G).

The only thing that is left to understand is the relation between the Borovoi fundamental group and the
algebraic fundamental group. This is studied in [Bor98, Section 1]. In particular, in [Bor98, Proposition 1.11]
Borovoi proves that we have a canonical isomorphism

π′
1(Ĝ)

θ−→ Hom
(
πtop
1 (Gm(C)), πtop

1 (Ĝ(C))
)
,

where πtop
1 (Ĝ(C)) and πtop

1 (G(C)) are the topological fundamental groups of Ĝ(C) and Gm(C) respectively.
We have an action on A on Hom

(
πtop
1 (Gm(C)), πtop

1 (Ĝ(C))
)

given by the action of A on πtop
1 (Ĝ(C)), and

this makes θ an A-equivariant map. To show this we write down θ explicitly. First θ maps X∗(T̂ ) to
Hom

(
πtop
1 (Gm(C), πtop

1 (T̂ (C))
)

using the functoriality of πtop
1 and then embeds it in Hom

(
πtop
1 (Gm(C), πtop

1 (Ĝ(C))
)
.

These maps are both obviously A-equivariant, therefore θ is.
Fixing an isomorphism πtop

1 (Gm(C)) ∼= Z determines isomorphisms

Hom
(
πtop
1 (Gm(C), πtop

1 (Ĝ(C))
) ∼= πtop

1 (Ĝ(C)) ∼= π1(Ĝ)(C).

The second isomorphism is A-equivariant since the action of A comes from the A-equivariant exact sequence

1→ π1(G)→ Ĝsc → Ĝ→ 1.

The action of A on π1(Ĝ) is determined by the action on π1(Ĝ)(C), but we just proved that this is trivial.

Theorem 3.20. We assume assumptions 1 and 2, and we assume that φ = φπ for some H(G(F ),K)-
module π. Moreover, assume that Πφ is in bijection with Irr(π0(Sφ), Id). Then Π̃φ is in bijection with the set
of irreducible representations of S̃φ.

Proof. Since the sequence
1→ π0(Sφ)→ π0(S̃φ)→ Aφ → 1

splits, then Irr(π0(S̃φ)) is in bijection with the pairs (α, ρ) with α ∈ Irr(π0(Sφ)) and ρ ∈ Irr(Aφ
α). But the

action of Aφ on π0(Sφ) is trivial by Lemma 3.19, therefore Aφ
α = Aφ for every α ∈ Irr(π0(Sφ)).

We recall that we have a bijection between Π̃φ and the pairs (π′, ρ) with π′ ∈ Πφ and ρ ∈ Irr(Aφ).

Therefore, the bijection Πφ → Irr(π0(Sφ), Id) concludes the proof.

Remark 3.21. We conclude with a comment on the assumptions that we had in the last theorem. Everything
relies on assumption 1, since it is the assumptions that makes us understand H(G,K ′)-modules for a non
A-fixed hyperspecial maximal compact subgroup K ′. The assumption of G being semisimple is probably easy
to drop, and it is mainly needed to ensure the algebraic fundamental group has nice properties. The real
problem is that if the sequence

1→ π0(Sφ)→ π0(S̃φ)→ Aφ → 1

does not split, then the representations of π0(S̃φ) are not easily accessible. One could try to drop the
hypothesis of Aφ fixing φ(frob), but without the splitting we would not get an easy description of these
representations. We still hope that the sequence might always split, saving us from using some facts from
the representation theory of abelian extension of finite groups.
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