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In these notes we are going to mainly follow the first pages of Toby Gee’s notes on modularity lifting
theorems. The point is not to write better notes (that is probably very hard) but just to have notes on what is
going to happen in this talk.

For the rest of the notes, we will denote by p > 2 a prime bigger than 2. If K is a field, we denote by GK

the absolute Galois group of K, by OK it’s ring of integers and by ϖK a uniformiser for OK .

After a brief introduction about the Weil group and the statement of the local class field theory, we are
going to state Grothendieck’s monodromy theorem for Galois representation with p ̸= l. After that, we’ll say
something about the case p = l, giving the definition of Hodge-Tate representation. In the end we are going to
say define geometric Galois representation for number fields, and state the Fontaine-Mazur conjecture.

1 Recollections

In this section we will just recall what is the Weil group of a local field and what is the statement of the
local class field theory. Let K being a finite extension of Ql, for some prime l ̸= p. We start by recalling that,
since the natural action of GK on K preserves the valuation, this induces an action on the residue field k and
therefore a map GK → Gk. We get a short exact sequence

1 → IK → GK → Gk → 1

with IK defined as the kernel of the last map, and called the inertia subgroup. Thanks to this sequence we
can define the Weil group to be the preimage of FrobZk with Frobk ∈ Gk the Frobenius:

1 IF GK Gk 1

1 IF WK FrobZk 1

The Weil group is a topological group, but not with the subspace topology. In fact, we chose the topology that
makes IK open.

We will denote by Kur the maximal unramified extension of K and by Ktame =
⋃

(m,l)=1 K
ur(ϖ

1/m
K ) the

maximal tamely ramified extension1. Then we denote PK := Gal(K/Ktame) the wild inertia subgroup of GK .

Given now a compatible system of primitive roots of unity2 ζ = (ζm)(m,l)=1, we get a character

tζ : IK/PK
∼−→

∏
p ̸=l

Zp

1L/K is tamely ramified if for any maximal ideal q of OL lying over p, we have that l/k is separable and l does not divide the
degree of L over the maximal unramified extension of K in L.

2This means that ζnmn = ζm.
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defined by
σ(ϖ

1/m
K )

ϖ
1/m
K

= ζ
(tζ(σ) (mod m))
m .

We will denote by tζ,p the composition of tζ with the projection on Zp.

The local class field theory, gives a interesting connection between the Weil group of a field, and the field
itself:

Theorem 1.1 (Local class field theory). There are unique isomorphism ArtK : K× → W ab
K such that for every

finite extension K ′/K, we have that ArtK′ = ArtK ◦NK′/K and moreover, the following diagram commutes:

K× W ab
K

Z FrobZk

valK

ArtK

The representation of W ab
K , are just characters of WK , and this theorem gives us a correspondence between

this characters and representations of K× = GL1(K). We can see this as the easiest case of the local Langlands
conjecture.

2 Introduction to Galois representation

Let now K a field with a fixed separable closure K, and let L being any topological field. We recall that the
Galois group GK has a natural profinite topology.

Definition 2.1. A Galois representation is a continuous homomorphism ρ : GK → GLn(L) for some n.

Clearly the nature of this representations strongly depends on L. For example, if L has the discrete topology,
the image of ρ is finite (GK is compact) and, therefore, ρ factors through a finite Galois group Gal(K ′/K).

On the other hand, if we consider L to be a finite extension of Qp there can be example of representation
with infinite image.

Example 2.2. One of the most important examples in which the image of a Galois representation is infinite, is the
p-adic cyclotomic character: let L = Qp and char(K) ̸= 0. Then we can define εp : GK → Z×

p as the character
such that if σ ∈ GK and ζ ∈ K with ζp

m

= 1 for some m, then σ(ζ) = ζεp(σ) mod pm

.It’s important to mention
that one can define εp as the unique Galois representation such that if σ ∈ GK then σ(ζpm) = ζ

εp(σ) mod pm

pm .

Now we want to study what happens if K is a finite extension of Ql and L is a finite extension of Qp.

2.1 p ̸= l: Groethendieck’s monodromy theorem

Let L a finite extension of Qp, and K a finite extension of Ql with p ̸= l .

Definition 2.3. A representation of WK over L is a finite dimensional representation of WK over L which
is continuous if L has the discrete topology (i.e. a representation with open kernel). A Weil–Deligne rep-
resentation of WK on a finite-dimensional L-vector space V is a pair (r,N) consisting of a representation
r : WK → GL(V ), and an endomorphism N ∈ End(V ) such that for all σ ∈ WK one has

r(σ)Nr(σ)−1 =
(1
l

)vK(σ)
N,

where vK : WK → Z is determined by σ|Kur = Frob
vK(σ)
K .

Remark 2.4. N is necessarily nilpotent.
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Remark 2.5. If we denote by W ′
K = WK ⋊Ga the Weil-Deligne group, then Weil-Deligne representation of WK

are just representation of W ′
K . Weil-Deligne representation are a important objects that compare in the local

Langlands conjecture.

The reason why we defined what is a Weil-Deligne representation is the following theorem, that gives us a
nice and more concrete way to look at Galois representation,

Theorem 2.6 (Groethendieck’s monodromy theorem). Let V a finite dimensional L-vector space. We fix
φ ∈ WK and (ζm)(m,l)=1 a compatible system of m-th roots of unity. If ρ : GK → GL(V ) is a continuous
representation, then there is a finite extension K ′/K and a unique nilpotent endomorphism N ∈ End(V ) such
that for every σ ∈ IK′

ρ(σ) = exp(Ntζ,p(σ)).

Moreover, we have an equivalence of categories from the category of continuous representation of GK on finite-
dimensional L-vector space, to the category of bounded Weil-Deligne representations on finite dimensional L-
vector space, that sends ρ → (V, r,N) with r(τ) := ρ(τ)exp(−tζ,p(φ

−vK(τ)τ)N).

The reason why Weil-Deligne representation are easier than Galois representations is because Weil-Deligne
do not depend on the topology on L.

2.2 p = l: p-adic Hodge theory

Galois representation for p = l are much more complicated and there is no simple analogue to Grothendieck
monodromy theorem. The study of representation GK → GLn(Qp) is part of p-adic Hodge theory and it has
initially been developed around the ’80s.

The idea is that we would like to study the representation "coming from geometry": let X being a smooth
projective variety over K. We have an analogue of the classical Hodge decomposition over C, given by

Hn
et(XK ,Qp)Cp

∼=
⊕

i+j=n

Hi(XK ,Ωj
X)⊗ Cp(−j),

where Cp(−j) is the Tate twist given by Cp⊗ ε−j
p . Moreover, this isomorphism is GK equivariant. Now we need

the following theorem:

Theorem 2.7 (Tate). For i ̸= 0,

H0(GK ,Cp(i)) = 0.

Now we consider the GK representation BHT , given by Cp[t, t
−1] with the action of GK on Cpt

j given by
εjp. We get that(

Hn
et(XK ,Qp)⊗Qp BHT

)GK∼=
( ⊕
i+j=n,m∈Z

Hi(XK ,Ωj
K)⊗ Cp(m− j)

)GK∼=
⊕

i+j=n

Hi(XK ,Ωj
X).

Therefore, the dimension over K of (Hn
et(XK ,Qp)⊗QpBHT

)GK is the same as the dimension of Hn
et(XK ,Qp).

This leads us to the following definition:

Definition 2.8. A Galois representation V of GK is called Hodge-Tate if

dimK(V ⊗BHT )
GK ∼= dimQp

(V ).

One can slightly modify this definition to get different kind of "geometric" representations:

{Crystalline} ⊂ {Semi-stable} ⊂ {De Rham} ⊂ {Hodge-Tate};

we don’t have that time to define all of those, but the following theorem should give and idea of how those
objects should look like:
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Theorem 2.9. If X is a smooth projective variety over K, then Hi
et(XK ,Qp) is a De Rham representation. If

X has good (resp. semistable) reduction then Hi
et(XK ,Qp) is crystalline (resp. semistable).

The closest analogue to Grothendieck monodromy theorem in this setting, is the following:

Theorem 2.10 (p-adic monodromy theorem). A representation is de Rham if and only if it is potentially
semistable, where potentially semistable means that it’s semistable after restricting to the absolute Galois group
of a finite extension of K.

Just to finish this section, we define what are Hodge-Tate weights, that are going to be very important in
the later talks:

Definition 2.11. If ρ : GK → GL(V ) is a Hodge-Tate representation, then the Hodge-Tate weights of V
are the i for which (V ⊗Qp

C(i))GK are non-zero and the multiplicity of the weight i is the K-dimension of this
latter space.

3 Galois representation over number fields

In this last section, we will assume K to be a number field, L to be an algebraic extension of Qp, and v is
going to be a place of K. Let K ′/K be a Galois extension. Since Gal(K ′/K) acts on the set of places over v,
for every place w of K ′ over v, we can define the group

Gal(K ′/K)w := {σ ∈ Gal(K ′/K) | w = σw},

and there is a natural isomorphism Gal(K ′/K)w ∼= Gal(K ′
w/Kv) that gives a canonical immersion of Gal(K ′

w/Kv) ↪→
Gal(K ′/K).

Definition 3.1. A Galois representation ρ : GK → GLn(L) is called geometric if it is unramified outside of
a finite set of places and it’s De Rham at each place over p. Here by unramified we mean trivial on the inertia.

Again, these geometric representation should be representation coming from étale cohomology. This is the
famous Fontaine-Mazur conjecture:

Conjecture: Let ρ : GK → GLn(Qp) be a geometric Galois representation. Then ρ is (the extension of
scalar of) a subquotient of a representation of the form Hi

et(XK ,Qp)
ss(j) where j denotes the Tate twist.
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