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Notation

For the entire talk, we fix G/F to be a quasi-split connected reductive group defined over a non-archimedean
local field F of characteristic 0. Later in the talk we will require G to be unramified. We denote by OF the
ring of integer of F and by f the residue field of F .

1 Introduction

The goal of this talk is to describe the L-packets of "unramified L-parameters". There are probably many
reasons one might want to do this, but here are two:

1. Unramified L-parameters are in some sense the simplest type of L-parameter, so describing their L-packets
is a good starting point for wanting to understand the Local Langlands map LL

2. Automorphic representations factor into local representations which turn out to be unramified at almost
all places. So understanding these will be important for understanding automorphic forms.

The word unramified will come from these being analogous to unramified Galois representations, as will be clear
later on.
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2 The basic objects

2.1 Unramified groups

The objects we will describe can only be defined on so-called "unramified groups" which we now introduce.
A simple motivation for these groups can be given as follows: in local class field theory we know that the inertia
subgroup, IF corresponds to O×

F = Gm(OF ) hence to get a correspondence in general we want to make sense
of G(OF ) for more general groups G. This is what unramified groups accomplish.

Definition 2.1. A compact subgroup K of G(F ) is called hyperspecial if there exists a smooth affine group
scheme G over OF such that the following conditions hold:

1. G(OF ) = K;

2. GF ∼= G;

3. Gf is a connected reductive group.

Remark 2.2. For the ones who know Bruhat-Tits theory. One can prove that if G is semisimple and unramified,
then a compact subgroup is hyperspecial if and only if it’s the stabilizer of a hyperspecial vertex1 in the Bruhat-
Tits building. In our setting, we have that G is unramified if, and only if, B(G) has a hyperspecial point.

Example 2.3. 1. The main example of a hyperspecial maximal compact subgroup of G(F ), is G(OF ).

2. Let G = SL2/Qp. Then one can show, via Brhuat-Tits theory, that there are 2 conjugacy class of maximal
compact hyperspecial subgroup, with representative K1 =

(
Zp Zp

Zp Zp

)
and K2 =

(
Zp pZp

p−1Zp Zp

)
We now describe for what class of groups hyperspecial subgroups exist:

Definition 2.4. An algebraic reductive group is called unramified if it’s quasi-split, and it splits over an
unramified extension.

Example 2.5. U(1) associated to some unramified quadratic field extension E/F is quasi-split but not split, and
splits over E which is unramified by assumption. Hence this gives a non-trivial example of a unramified group.

These turn out to all the groups admitting hyperspecial compact subgroups:

Theorem 2.6. G is unramified iff there exists a hyperspecial compact subgroup in G(F ).

For the remainder of the talk: fix G a unramified reductive group over F , and K ≤ G(F ) a hyperspecial
subgroup.

2.2 Unramified representations

Definition 2.7. Let K be a hyperspecial maximal compact subgroup of G(F ). A representation (π, V ) of G(F )

is called spherical with respect to K (or K-spherical) if V K ̸= 0. (π, V ) is called unramified if it is spherical
with respect to some hyperspecial maximal compact subgroup.

A simple example of these would be characters of split tori T trivial on T (OF ). For T = Gm one sees that
they correspond to unramified characters of the Galois group via the local reciprocity map, which gives some
motivation for the term unramified.

2.3 Unramified L-parameters

Since we have assumed our group is unramfied, we take LG to be Ĝ(C)⋊ FrZ, where Fr is some choice of
geometric Frobenius element. This is needed to define unramified L-parameters:

Definition 2.8. We say that an L-parameter φ : W ′
F →L G is unramified if it’s trivial on IF and SL2(C).

1A hyperspecial vertex is a vertex that is special and keeps being special after any base change to an unramified extension
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Giving an unramified L-parameter then simply corresponds to picking a semisimple element ϕ(Fr) in the
coset Ĝ(C)⋊ Fr.

One can simplify this further, by a "frobenius twisted" version of the fact that semisimple elements in con-
nected groups can be conjugated into any maximal torus:

{unramified L-parameters}/Ĝ(C)-conj←→ (T̂ (C)⋊ Fr)/FN(C)←→ (T̂ ⋊ Fr/FN)(C)

Here FN is defined as the constant C-group scheme with C-points:

FN(C) := {n ∈ NĜ(T̂ )(C) : [n] ∈W (Ĝ, T̂ )(C) is stable under frobenius}

It acts on T̂ ⋊Fr via conjugation in LG. This final parametrization of unramified L-parameters will be used to
relate them to unramified representations via the Satake isomorphism. The here makes sense as a GIT quotient
since T̂ ⋊ Fr is affine.

3 The Satake isomorphism

To state the Satake isomorphism we need to know some things about Hecke algebras:

3.1 Hecke Algebras

The Hecke algebras are "smooth" analogues of group rings, in the sense that (smooth) modules over them
will correspond to smooth G(F ) representations. For details on this see [Hah22, Chapter 5]

Definition 3.1. The Hecke algebra of a reductive group G is defined as the (non-unital!) algebra H(G(F )) :=

(C∞
c (G(F )), ∗), where ∗ is given by convolution of functions.

Definition 3.2. A smooth Hecke module is a nondegenerate H(G(F ))-module, i.e. a module V such that
H(G(F ))V = V

Now any smooth G(F )-representation (V, π) gives rise to a Hecke module by the following action:

π(f)v :=

∫
G(F )

f(g)π(g)vdµ

This is analogous to how one in the finite groups setting gives a Z[G]-module structure to a G-representation.

We also have unramified versions of the above:

Definition 3.3. The unramified Hecke algebra of G(F ), denotedH(G(F ),K), consists of the K-bi-invariant
functions in H(G(F )).

By restricting the action defined above, we see that for any unramified representation (V, π), V K gets the
structure of a H(G(F ),K)-module. We now have the following key results:

Theorem 3.4. The above construction gives us an equivalence of categories:

{smooth G(F )-representations} ←→ {smooth H(G(F ),K)-modules}

As well as a bijection:

{irreducible smooth K-unramified G(F )-representations} ←→ {simple smooth H(G(F ),K)-modules}

V 7→ V K

In particular, two unramified irreducible representations (π0, V0), (π1, V1) are isomorphic as smooth representa-
tions iff V K

0
∼= V K

1 as H(G(F ),K)-modules.
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3.2 Satake isomorphism

The Satake isomorphism will describe the unramified Hecke algebra, and by the above it will therefore also
help us to describe the irreducible unramified representations. Let us fix the notation C[X], to denote the global
sections of a C-scheme X. This lets us state the following:

Theorem 3.5 (the Satake isomorphism). We have an isomorphism:

H(G(F ),K)
∼−→ C[T̂ ⋊ Fr]FN

We get the following immediate corollary:

Corollary 3.6. H(G(F ),K) is commutative, in particular simple modules over it are 1-dimensional.

Using this corollary, and the Satake isomorphism gives us the following parametrization:

{irreducible smooth K-unramified G(F )-representations}/ ∼ ←→ Hom(H(G(F ),K),C)

←→ Hom(C[T̂ ⋊ Fr]FN ,C)

←→ (T̂ ⋊ Fr/FN)(C)

4 Principal series

4.1 Spherical representations

From now on, we fix a maximal hyperspecial compact subgroup K of an unramified group G(F ). What we
want to do now, is giving an explicit construction of the K-spherical irreducible representations. Before doing
that, we want to give the definition of unramified character and we want to recall the statement of the Iwashawa
decomposition.

Definition 4.1. We have a valuation map ωG : G(F )→ X∗(G) defined as the map such that〈
ωG(g), φ

〉
= valF (φ(g)).

We denote by G(F )1 the kernel of the valuation map. A character χ of G(F ) is called unramified if it vanishes
over G(F )1.

Example 4.2. 1. Let G being semisimple. Then, G(F )1 = G(F ). So the only unramified character of a
semisimple group is the trivial character.

2. If G = Gm, then the map ωG is just the valuation map. We can check this: let x ∈ F×, and let
φ = n ∈ X∗(Gm) ∼= Z. Then we have

n · ωG(x) =
〈
ωG(x), φ

〉
= val(φ(x)) = val(xn) = n · val(φ(x)),

so we get that ωG(x) = val(x). Then Gm(F )1 = O×
F . We can generalize this and we get, that for a general

split torus T , we have T (F )1 = T (OF ).

Remark 4.3. The unramified characters of a torus T (F ) are exactly the irreducible unramified representation
of T (F ).

Now we give the statement of the Iwasawa deomposition. This is a standard result that can be proven with
Bruhat-Tits theory.

Theorem 4.4 (Iwasawa decomposition). There exists a maximal torus T and a Borel subgroup B = TU with
unipotent radical U, such that G(F ) = B(F )K.

From now on we fix B and T as the ones in the Iwasawa decompositon. For the construction of the K-
spherical irreducible representations, we are going to follow [C+79]. We first give an outline of the construction.
The point is that every K-spherical irreducible representation, is associated to something called a K-spherical
function, and every K-spherical function comes from some unramified character of the torus of T (F ). So, first
we want to define what are these K-spherical functions:
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Definition 4.5. A (zonal) spherical function on G(F ) with respect to K, (or just a K-spherical function) is
a function Γ : G(F )→ C, bi-invariant under K, such that Γ(1) = 1 and

Γ(g1)Γ(g2) =

∫
K

Γ(g1kg2)dk for g1, g2 ∈ G(F ). (1)

The question now is: how can we get a spherical function from an unramified character of T (F )? Consider
an unramified character χ of T (F ) and consider the function ϕK,χ given by

ϕK,χ(tuk) = δ(t)1/2χ(t) for t ∈ T, u ∈ U, k ∈ K.

Here δ(t) is what is called the modulus function2. Set

ΓK
χ (g) =

∫
K

ϕK,χ(kg)dk for g ∈ G.

Theorem 4.6. 1. ΓK
χ is a K-spherical function.

2. Every K-spherical function on G(F ) with respect to K is of the form ΓK
χ for some unramified character

χ.

3. Two different unramified character χ, χ′ give the same K-spherical function if, and only if, there exists
an element w ∈W such that χ = w · χ′.

Proof. The fact that ΓK
χ is K-bi-invariant and Γ(1) = 1 is easy. For the rest of the proof we recommend [C+79,

Theorem 4.2].

Given a spherical function, we can know construct a spherical representation associated to it. Let Γ be a
spherical function on G(F ) (w.r.t. K) and denote by VΓ the space of functions f on G(F ) of the form

f(g) =

n∑
i=1

ciΓ(ggi)

for some c1, . . . , cn ∈ C and g1, . . . , gn ∈ G. We let G act on VΓ by right translations, namely

(πΓ(g) · f)(g′) = f(g′g) for g, g′ ∈ G, f ∈ VΓ. (2)

Theorem 4.7. 1. The representation (πΓ, VΓ) is irreducible spherical (w.r.t. K) and the elements of VΓ

invariant under K are the constant multiples of Γ.

2. Let (π, V ) be any K-spherical irreducible representation of G(F ). There exists a unique spherical function
Γ such that (π, V ) is isomorphic to (πΓ, VΓ).

Proof. 1. VΓ is K-spherical since, Γ ∈ V K
Γ . The irreducibility, one can prove that each subrepresentation

must contain Γ using the third property of spherical functions 1. Now we divide the proof of the theorem
in steps:

We will just give a sketch of the proof. For a more detailed proof, we recomend [C+79, Theorem 4.3].

(a) First we prove that V K is a simple H(G(F ),K) module.

(b) Then, since we know from the Satake isomorphism that H(G(F ),K) is commutative, V K must be
1-dimensional.

(c) We consider the controgradient representation Ṽ of V, and we consider Ṽ K that must be 1-dimensional
since it’s isomorphic to the dual of V K . The we chose v ∈ V, and ṽ ∈ Ṽ such that

〈
ṽ, v

〉
= 1. Then

we can define the function
Γ(g) =

〈
ṽ, π(g) · v

〉
for g ∈ G(F ).

(d) We prove that (π, V ) ∼= (πΓ, VΓ).

2The modulus function is defined as δ(t) := |detAdu(t)|F where u is the Lie algebra of U . For us is not really relevant, it’s just
a correction factor that we need for having nice properties.
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4.2 Unramified principal series

Now, we want some representation that, in some sense, contains all the possible unramified representation
associated to some unramified character of some torus. This will be helpfull to state the local Langlands
conjecture for the unramified case.

Let χ be an unramified character of T (F ). We define the unramified principal series PS(χ)3 of G(F ) to be
the following representation: PS(χ) consists of the locally constant function f : G(F )→ C such that

f(tug) = δ(t)1/2χ(t)f(g), for t ∈ T, u ∈ U, g ∈ G.

The group acts on this space via right translation, namely

g · f(g′) = f(g′g) for f ∈ PS(χ), g, g′ ∈ G(F ).

One can notice that this is just the induction of χ, with an adjustment given by δ1/2.

Theorem 4.8. 1. Assume that PS(χ) is irreducible. Then it is isomorphic to (πΓK
χ
, VΓK

χ
) via the map that

sends f → f ♯ defined as f ♯(g) =
∫
K
f(kg)dk.

2. In general, let 0 = V0 ⊂ V1 ⊂ · · · ⊂ Vr = PS(χ) be a Jordan-Holder series of the H(G(F ))-module PS(χ).
There exists a unique index j such that Vj/Vj−1 is K-spherical. In that case, this quotient is isomorphic
to (πΓK

χ
, VΓK

χ
).

So, in some sense we can think of the unramified principal series associated to χ, as a representation that
"contains" all the unramified representation associated to χ.

5 The correspondence for tori

In this section we are going to state some results about the correspondence for tori. A more complete
reference for this is [Bor79, Section 9]. We consider T an unramified torus over F .

Theorem 5.1. There is a bijection Π(T )←→ Φ(T ).

Proof. [Lan68, Theorem 1].

Moreover, T has only one maximal hyperspecial compact subgroup up to conjugaction, that is T (F )1.

Therefore, if φ ∈ Φur(T ) is an unramified L-parameter, this is associated to some semisimple element in
T̂ (C)⋊ Fr, and this corresponds, thanks to a corollary of the Satake isomorphism, to an unramified character
χ ∈ Πur(T ). This gives us a bijection between the set Πur(T ) of unramified character and Φur(T ) of unramified
L-parameter.

Remark 5.2. If G = GL2, then it’s still true that there is only 1 conjugacy class of hyperspecial maximal
compact subgroup. So, the same argument as before, proves that we have a bijection between Πur(G) and
Φur(G).

6 The correspondence in the unramified case

References for this section, are [Bor79, Section 10.5] and [Mis12]. In this section T is any maximal torus of
G. Let φ ∈ Φur(G). Being unramified means that φ vanishes on SL2 and IF . It factors through WF /IF that is
abelian, so it’s image is abelian and contained in a maximal torus of LG. Since φ is defined up to conjugation,
we can assume that the image of φ is contained in LT.

So, we can see φ as an element in Φ(T )ur. Using the correspondence for tori, we get an unramified character
χφ =: χ of T (F ) associated to φ. Now we can construct the unramified principal series PS(χ), and we want to
describe the packet Πφ via PS(χ).

THE CONJECTURE: We require Πφ to consist of the factors of the Jordan-Holder series of PS(χ) that
are unramified.

3[C+79] uses I(χ) instead of PS(χ) as notation
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Example 6.1. This example is actually incomplete, but we present what we have got so far.
Let G = SL2/Qp, and consider the unramified L-parameter φ that sends Fr → τ = ( x 0

0 1 ). The point of
T̂ (C) corresponds to point in X∗(T̂ )⊗C× by evaluating. So, τ corresponds to the element (1, 0)⊗x. From this,
we get that τ corresponds to the unramified character χ : T (F )→ C× that sends t = ( a 0

0 b )→ xval(a).

Now, first we notice that if x = 1, then the centralizer of the image of φ, is given by G(F ), and it’s equal to
T (F ) if x > 1.

If τ =
(−1 0

0 1

)
then, the matrix

(
0 1
−1 0

)
is contained in the centralizer of the image of φ. Therefore, one

can compute that π0(Sφ) non-trivial, and it is in fact isomorphic to Z/2Z. So, we expect to find a non trivial
L-packet if x = −1.

Now one can try to understand PS(χ). We can prove (using [C+79, Theorem 3.5]) that End(PS(χ)) is
actually 2 dimensional if x = −1, and this implies that PS(χ), in this case, is not irreducible. Actually, one can
prove, using the same theorem, that PS(χ) is irreducible exactly when we expect it to be.
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