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The goal of this talk is defining the Moy-Prassad filtration for a connected reductive quasi-split
algebraic group, and try to understand this is an interesting tool for the studying of the representation
of the group. We are going to start with an example from last semester:

Example 0.1. Consider the group G = SL2/Qp, and consider the associated building:

With x the point associated with the subgroup Gx :=
(

Zp Zp

Zp Zp

)
, and y the point associated to the

subgroup Gy :=
(

Zp pZp

Zp Zp

)
. Last semester, we described the vertices of the building in terms of graded

period lattice chains.
Given a point in the building w = (Lα, c+r) ∈ B(G), we defined the Moy-Prassad filtration subgroups

via
Gw,s := {g ∈ SL(V ) | (g − 1)Lα,r ⊂ Lα,r+s}

and we got 2 filtrations:

Gx,0 =
(

Zp Zp

Zp Zp

)
⊃ Gx,1 =

(
1+pZp pZp

pZp 1+pZp

)
⊃ Gx,2 =

(
1+p2Zp p2Zp

p2Zp 1+p2Zp

)
· · ·

and

Gy =
(

Zp pZp

Zp Zp

)
⊃ Gy, 12

=
(

1+pZp pZp

Zp 1+pZp

)
⊃ Gy,1 =

(
1+pZp p2Zp

pZp 1+pZp

)
⊃ Gy, 32

:=
(

1+p2Zp p2Zp

pZp 1+p2Zp

)
· · ·

These are the Moy-Prassad filtrations for Gx and Gy respectively. The goal of this talk is to generalize
this construction to a general reductive group.

Notice that we can already see some of the good properties that we want the Moy-Prassad filtration
to satisfy:

1. Gx,r is compact, open and normal in Gx,0.

2. The filtration is separated1.

3. Gx,0/Gx,0+
2 is the group of the Fp points of an Fp-reductive group Gx.

1A filtration is called separated if the intersection of the entire filtration is 0. It’s called exhaustive if the union is the
entire group.

2We denote Gx,0+ =
⋃

s>0 Gx,s.

1



4. Gx,r/Gx,r+ is an Fp vector space.

From now on, we will use the following usual notation: k is field with a discrete valuation ω : k× → R,
o it’s its ring of integers with maximal ideal m and residue field f. For this talk we will assume that f is
perfect and ω(k×) = Z. We denote K the maximal unramified extension of k, O its ring of integers, and
Γ = Gal(K/k). Finally, G will be a reductive group over k.

From last semester, we already know that fixing a point in x ∈ B(G, k), we get a descending filtration
of the root groups Uα given by the open compact subgroups

Uα,x,r := {u ∈ Uα | φx,α(u) ≥ r}.

What we need now is a filtration of the centralizer of a maximal split torus S.

Filtration for ZG(S)

Main reference: Chapter 7 of [2]
We start with a connected reductive group G over k, a maximal split torus S and its centralizer

Z = ZG(S). Recall that Z is a maximal torus if G is quasi-split.
More general, we want to define a filtration for any torus T/k, and we want this filtration to be

"good". (Separable, commutator friendly,..)
We would like to define our filtration in this way:

1. T (K)0 = T (K)0 the Iwahori subgroup.

2. If T is induced3, and r ≥ 0, then

T (k)r := {t ∈ T (k)0 | ∀χ ∈ X∗(T ) : ω(χ(t)− 1) ≥ r}.

The filtration defined via (1) and (2) is called standard filtration, and it has some really good
properties if T has at least induced wild ramification.

Example 0.2. If G = GLn over Qp, and T is the torus consisting of diagonal matrices, then T (F )0 consists
of all diagonal matrices with entries in O× and T (F )r consists of all diagonal matrices with entries in
1 +ϖ⌈r⌉O.

If T has induced wild ramification, the standard filtration induces a filtration on the Lie algebra

t(k)r := {X ∈ t(k) | ω(dχ(X)) ≥ r for every χ ∈ X∗(T )}.

Moreover we have a functorial isomorphism, called the Moy-Prassad isomorphism

T (k)r/T (k)s → t(k)r/t(k)s.

More in general, one can construct a filtration called minimal congruent filtration, that has
the properties that we want and that coincides with the standard filtration when T has induced wild
ramification.

But what does it mean to be good?

Definition 0.3. Consider {T (k)∗r}r∈R a filtration of T (k)0. Then the filtration is called:

• Functorial if for every two tori T1/k, T2/k and every map f : T1 → T2 it satisyies f(T1(k)
∗
r) ⊂

T2(k)r∗;

• Admissible if it coincides with the standard filtration is T is induced, T (k)∗0 = T (k)0 and T (k)∗0+
is the group of elements having unipotent image in T 0(̄f).

3A k-torus T is called induced if the lattice X∗(T ), or equivalently X∗(T ), has a Z-basis that is invariant under the
Galois group of the splitting extension of T . e.g. G simply connected or adjoint, then a maximal torus is induced. A torus
as induced wild ramification if there exists a tamely ramified extension l of k, such that Tl is induced.
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When we say "good", we mean that these two properties hold, that we have a Moy-Prassad isomor-
phism, and that the subgroups of the filtration are schematic and connected.

The good thing for us, is that, the result that we are about to present, just requires the existence of
"good" filtration. Therefore, from now on, we will assume that we have a "good" filtration Z(k)r ⊂ Z(k)

in G.

Concave function and associated parahoric subgroup

Main references: Chapter 7.3, Chapter 14.2 [2]
Consider Φ a root suystem for G, and Φ̂ = Φ ∪ {0}.

Definition 0.4. A function f : Φ̂ → R̃4 is called concave if f(a+ b) ≤ f(a) + f(b) for every a, b ∈ Φ̂.

Definition 0.5. Let x ∈ A(S), and f concave. Then:

1. Ua,x,f = Ua,x,f(a)U2a,x,f(2a) for a ∈ Φ.

2. We set G(k)♯x,f to be the subgroup generated by the Ua,x,f with a ∈ Φ.

3. Px,f := G(k)x,f := G(k)♯x,f · Z(k)f(0).

Remark 0.6. Notice that the definition of Px,f depends on the choice of the filtration of Z(G).

Remark 0.7. Even if Px,0 depends only on the facet in which x is contained, this doesn’t hold for Px,f .

Theorem 0.8. Let f : Φ̂ → R̃ \ {∞} be a concave function. Then the subgroup G(k)x,f is schematic and
connected. We will write Gx,f for its corresponding smooth model with connected fibers. Moreover, the
product morphism ∏

α∈Φ−,nd

Uα,x,f × Zf(0) ×
∏

α∈Φ+,nd

Uα,x,f → Gx,f
5

is an open immersion, and the product over Φ−,nd and Φ+,nd can be taken arbitrary. Here Uα,x,f ,Zf(0)

denote the integral model of Uα,x,f and Z(k)f(0) respectively.

Proof. The proof of this theorem is complicated and we are not going to do it. Reference: Section 8.5,
Theorem 8.5.2, [2].

Definition 0.9. We define the Moy–Prasad filtration subgroup to be Px,r with r ∈ R seen as a
constant function (so concave). Notice that, Px,0 = G(k)0x.

Remark 0.10. Pick x ∈ A(TK) in B(GK), we can get define analogously the Moy-Prassad filtration Px,r

of GK . In this case, Px,r = (Px,r)
Γ.

Remark 0.11. One can show that Px,r is a bounded open subgroup.

Proposition 0.12. The filtration {Px,r}r∈R is a decreasing separated filtration of G(k) by bounded open
subgroups with the following properties:

1. The group Px,r depends only on x and r, not on S;

2. For any g ∈ G(k), gPx,rg
−1 = Pgx,r. In particular, Px,r is normal in G(k)x = StabG(x).

3. If r > 0 then the product map∏
α∈Φ+

Uα,x,r × Z(k)r ×
∏

α∈Φ−

Uα,x,r → Px,r

is a bijection and the factor in the product over Φ+ and Φ− can be taken in every order.
4R̃ = R ∪ {∞}
5Φnd = {a ∈ Φ | a/2 ̸∈ Φ}.
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4. [Px,r,Px,s] ⊆ Px,r+s.

Remark 0.13. Consider x ∈ B(G), G 0
x be the parahoric group scheme with connected fibers. Let G

0

x

the special fiber of G 0
x and Gx the maximal reductive quotient of G

0

x. The surjective morphism Px,0 =

G 0
x (o) → Gx(f) has kernel Px,0+. Therefore, we can identify Gx(f) with Px,0/Px,0+. More generally, we

have an identity of f-group Gx = Cok(G x,0 → G x,0+) where the last map is induced by the inclusion of
G(k)x,0+ ⊂ G(k)x,0.

Gx will be very important for studying the filtration.

Remark 0.14. The quotient G(k)x,r/G(k)x,r+ it’s a vector space over f.

Filtration of the Lie Algebra

Main reference: Chapter 14.3 [2]
Let x ∈ B(G) and consider for r ∈ R≥0 the group scheme Gx,r. We call gx,r the Lie algebra of this

group scheme. This forms an o-lattice in g(k). The Lie algebra is often easier to study than the group.
We have a nice identity given by gx,r+n = mn · gx,r with m the maximal ideal in o, and the sequence
{gx,r} defines a descending separated filtration of g(k).

We can give a more explicit description of gx,r. Namely, if gx,r(O) is the O-lattice in g(K) given by
the Lie algebra of Gx,r ×o O, then gx,r = gx,r(K)Γ.

Now, from theorem 0.8, we get a nice description of the O-lattice gx,r(O) inside gx,r(K). In fact, we
know that the map ⊕

α∈Φ+,nd

uα,x,r ⊕ zr ⊕
⊕

α∈Φ−,nd

uα,x,r → gx,r(O)

is an isomorphism of O-modules, where uα,x,r, zr are the Lie algebras of Uα,x,r and Zr respectively.
But why did we introduce this tool? Even if it’s easier to study, at the moment we don’t know how

this Lie algebras are linked with the Moy-Prassad filtration subgroups. That’s why, the next section it is
crucial.

Moy-Prassad isomorphism

Our next goal it to prove the there is a Moy-Prassad isomorphism analogous to the case of the
filtration of the torus. For this, we require that the chosen filtration for the torus respects the Moy-
Prassad isomorphim.

Now, fix 2 positive real numbers 0 ≤ r ≤ s, and consider the following conditions:

1. The maximally split maximal torus of GK has induced wild ramification.

2. r = r0 + n with 0 ≤ r0 < 1 and n an integer. and s ≤ r0 + 2n.

3. 0 < r ≤ s ≤ 2r ≤ r + 1.

Note that these 3 conditions are not mutaly exclusive.

Theorem 0.15. Assume that one of the last 3 conditions hold.

1. There exists an isomorphism of abstract abelian groups

MPx,r,s : G(k)x,r/G(k)x,r → g(k)x,r/g(k)x,s

compatible with unramified algebraic extension.

2. If either one of condition 1 and 2 holds, then the isomorphism can be chosen with the following
property: For any k-rational automorphism, θ of G, then

dθ ◦MPx,r,s ◦ θ−1 = MPθ(x),r,s.
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3. When both conditions (1) and (2) hold simultaneously, the isomorphism they lead coincide.

Remark 0.16. Let x ∈ B(G). G(K)x,r is normal in G(K)0x, so we have the conjugation action of G(K)0x
on G(K)x,r. This action extends to an action of G 0

x on the group scheme Gx,r and hence, on the Lie
algebra gx,r .

This action descends now to a rational action of G 0
x on gx,r ⊗o f, that induces an f-rational action of

Gx on gx,r ⊗o f/gx,r+ ⊗o f.

Example 0.17. Let’s consider the first example that we had in this talk: G = SL2/Qp.

We had the filtration of

Gx,0 =
(

Zp Zp

Zp Zp

)
⊃ Gx,1 =

(
1+pZp pZp

pZp 1+pZp

)
⊃ Gx,2 =

(
1+p2Zp p2Zp

p2Zp 1+p2Zp

)
· · ·

The quotient of Gx,0/Gx,1
∼= SL2(Fp).6 The Lie algebra is gx,n :=

(
pna pnb
pnc −pna

)
.

Now, the quotient gx,1/gx,2 ∼= sl2(Fp). Moreover, the action of the quotient Gx,0/Gx,1 is just the
adjoint action.

For y we have analogous results. y is not special, and Gy,0/Gy, 12
∼= Gm.

Stable and semi-stable vectors. The Hilbert-Mumford criterion

Let G be a reductive group acting linearly on a vector space V .

Definition 0.18. A non-zero point λ ∈ V is called semi-stable, if 0 is not contained in the closure of its
orbit, and unstable otherwise. λ is called stable if its orbit is closed and its stabilizer is finite.

Remark 0.19. Stable implies semi-stable.

Example 0.20. Consider G = Gm/C and λ an action on some finite dimensional vector space V.

We can decompose V into a direct sum V =
⊕

i Vi where on the i-th component, the action is given
by λ(t) · v = ti · v. We call i the weight.

Now, we look at the set of weights of a point x.

• If all the weights are strictly positive, then limt→0λ(t) · x = 0, so x is in the closure of the orbit,
and x is unstable.

• If all the weights are non-negative, with 0 being a weight, then either 0 is the only weight in which
case x is stabilized by C∗, or there are some positive weights beside 0, and then, limt→0λ(t) · x is
the weight-0 component of x, that is not in the orbit of x. In both cases, x is semi-stable but not
stable.

The Hilbert-Mumford criterion The Hilbert–Mumford criterion essentially says that the multiplica-
tive group case is the typical situation. Precisely, for a general reductive group G acting linearly on a
vector space V , the stability of a point x can be characterized via the study of 1-parameter subgroups of
G, which are non-trivial morphisms λ : Gm → G.

• A point x is unstable if and only if there is a 1-parameter subgroup of G for which x admits only
positive weights or only negative weights;

• A point x is semi-stable if and only if there is no such 1-parameter subgroup, i.e. for every 1-
parameter subgroup there are both non-positive and non-negative weights;

• A point x is strictly semi-stable if and only if there is a 1-parameter subgroup of G for which x

admits 0 as a weight, with all the weights being non-negative (or non-positive);
6This is always true if we consider a split group and a special point.
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• A point x is stable if and only if there is no 1-parameter subgroup of G for which x admits only
non-negative weights or only non-positive weights, i.e. for every 1-parameter subgroup there are
both positive and negative weights.

The case that we are going to study is the following: Consider the action of G(K)x,0/G(K)x,0+, on
G(K)x,r/G(K)x,r+ =: Vx,r, and consider the dual of this representation. We call V̂x,r := Hom(Vx,r, f).

What we are going to do, in the next talk, is seeing what happens if we have a stable vector in V̂x,r,

following [3].

Remark 0.21. Exercise:
In our favorite example, G = SL2 we can try to compute stable and semi-stable.
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